中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [3]
内容类型
期刊论文 [2]
会议论文 [1]
发表日期
2022 [1]
2021 [1]
2010 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
SE-GRU: Structure Embedded Gated Recurrent Unit Neural Networks for Temporal Link Prediction
期刊论文
OAI收割
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 卷号: 9, 期号: 4, 页码: 2495-2509
作者:
Yin, Yanting
;
Wu, Yajing
;
Yang, Xuebing
;
Zhang, Wensheng
;
Yuan, Xiaojie
  |  
收藏
  |  
浏览/下载:52/0
  |  
提交时间:2022/07/25
Time-frequency analysis
Feature extraction
Predictive models
Optimization
Topology
Measurement
Logic gates
Temporal link prediction
dynamic graphs
graph embedding
neural networks
Topology Prediction and Structural Controllability Analysis of Complex Networks Without Connection Information
期刊论文
OAI收割
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 页码: 13
作者:
Yang, Dongsheng
;
Sun, Yunhe
;
Wei, Qinglai
;
Zhang, Huaguang
;
Li, Ting
  |  
收藏
  |  
浏览/下载:31/0
  |  
提交时间:2022/01/27
Controllability
Topology
Complex networks
Sun
Pattern matching
Couplings
Web sites
Complex networks
structural controllability
topology prediction
The costs prediction of AOD furnace based on improved RBF neural network (EI CONFERENCE)
会议论文
OAI收割
2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, CMCE 2010, August 24, 2010 - August 26, 2010, Changchun, China
Na T.
;
Zhang D.-J.
;
Hui L.
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2013/03/25
In order to predict the cost
a model of cost prediction was set up based on adaptive hierarchical genetic algorithm and RBF neural network. Hierarchical genetic algorithm could optimize the topology and the parameters simultaneously. Compared with simple genetic algorithm
it has more efficiency in not only accelerating and stabilizing the parameters training but also determining the structure of the network. Adaptive crossover and mutation probability could accelerate the speed and avoid prematurity. The model was tested by five samples. The results showed that the prediction model has high prediction accuracy
which indicated that it was applicable to predict the cost by the model. 2010 IEEE.