中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
数学与系统科学研究院 [2]
长春光学精密机械与物... [1]
自动化研究所 [1]
采集方式
OAI收割 [4]
内容类型
期刊论文 [3]
会议论文 [1]
发表日期
2024 [1]
2011 [1]
2006 [1]
2001 [1]
学科主题
筛选
浏览/检索结果:
共4条,第1-4条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Data-Based Filters for Non-Gaussian Dynamic Systems With Unknown Output Noise Covariance
期刊论文
OAI收割
IEEE/CAA Journal of Automatica Sinica, 2024, 卷号: 11, 期号: 4, 页码: 866-877
作者:
Elham Javanfar
;
Mehdi Rahmani
  |  
收藏
  |  
浏览/下载:17/0
  |  
提交时间:2024/03/18
Data-based filter
maximum likelihood estimation
unknown covariance
weighted maximum likelihood estimation
weighted sum-of-norms clustering
Application of improved UKF algorithm in initial alignment of SINS (EI CONFERENCE)
会议论文
OAI收割
2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011, August 8, 2011 - August 10, 2011, Zhengzhou, China
Su W. X.
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2013/03/25
In order to improve the initial alignment accuracy and convergence rate of the SINS system
proposed the improved UKF algorithm (AUKF) based on the Unscented Kalman Filter (UKF). Noise statistical characteristics are mostly unknown in real systems
when it was effected by the initial value errors and dynamic model errors
AUKF algorithm can real-time adjust the covariance of the state vector and observation vector
and balance the right ratio of the state information and observation information in the filter results
thereby improving the system performance. The experimental results show: The Improved UKF Algorithm enhances the convergence speed and alignment accuracy effectively. 2011 IEEE.
Admissibilities of matrix linear estimators multivariate linear models
期刊论文
OAI收割
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 卷号: 136, 期号: 11, 页码: 3852-3870
作者:
Wu, Qi-Guang
;
Noda, Kazuo
  |  
收藏
  |  
浏览/下载:16/0
  |  
提交时间:2018/07/30
estimable parameter matrix linear function
with and without normality assumption
unknown covariance matrix
necessary and sufficient conditions
quadratic matfix loss functions
space of all matrix estimators
restricted space of all matrix linear estimators
Admissibility and inadmissibility of a generalized Bayes unbiased estimator in a multivariate linear model
期刊论文
OAI收割
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 卷号: 93, 期号: 1-2, 页码: 197-210
作者:
Noda, K
;
Wu, QG
;
Shimizu, K
  |  
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2018/07/30
estimable matrix function
parameter matrix
matrix loss functions
semiorder
unknown covariance matrix
James-Stein-type matrix estimators