中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
沈阳自动化研究所 [2]
长春光学精密机械与物... [1]
采集方式
OAI收割 [3]
内容类型
会议论文 [2]
期刊论文 [1]
发表日期
2021 [1]
2020 [1]
2009 [1]
学科主题
筛选
浏览/检索结果:
共3条,第1-3条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
FusionGAN-Detection: Vehicle detection based on 3D-LIDAR and color camera data
会议论文
OAI收割
Shanghai, China, October 28-31, 2021
作者:
Zhang H(张浩)
;
Hua HY(花海洋)
  |  
收藏
  |  
浏览/下载:68/0
  |  
提交时间:2022/03/15
vehicle detection
multimodal information fusion
GAN
3D-LIDAR
Vehicle Key Information Detection Algorithm Based on Improved SSD
期刊论文
OAI收割
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, 卷号: E103A, 期号: 5, 页码: 769-779
作者:
Wang ED(王恩德)
;
Li Y(李勇)
;
Wang YB(王岳斌)
;
Wang P(王鹏)
;
Jiao JL(焦金磊);
  |  
收藏
  |  
浏览/下载:14/0
  |  
提交时间:2020/05/24
vehicle information detection
deep learning
convolutional neural network
target detection
Real-time motive vehicle detection with adaptive background updating model and HSV colour space (EI CONFERENCE)
会议论文
OAI收割
4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, November 19, 2008 - November 21, 2008, Chengdu, China
Rong-Hui Z.
;
Bai Y.
;
Hong-guang J.
;
Chen T.
收藏
  |  
浏览/下载:66/0
  |  
提交时间:2013/03/25
In the transportation monitor system
we set up the area of interest (AOI) of the vehicle model and adjust the size of AOI dynamically in order to track vehicle accurately. The results of experiment show that
motive vehicle detection by adopting digital image is one of key technologies. To detect motive vehicle accurately
the arithmetic proposed in the paper can suppress shadow availably
we establish an adaptive background updating model firstly. Noise is suppressed by using modality filter
detect motive vehicle accurately and satisfy real-time motive vehicle tracking. 2009 SPIE.
and we obtain binary image by using maximum entropy to choose dynamic adaptive threshold. Based on positive information of shadow and aspect feature of motive vehicle
we adopt HSV colour space and double threshold to solve the problem of vehicle shadow. According to prediction result of Kalman filtering