中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
机构
采集方式
内容类型
发表日期
学科主题
筛选

浏览/检索结果: 共6条,第1-6条 帮助

条数/页: 排序方式:
CPRM: Color perception and representation model for fabric image based on color sensitivity of human visual system 期刊论文  OAI收割
TEXTILE RESEARCH JOURNAL, 2023, 页码: 15
作者:  
Zhao, Xueqing;  Yang, Han;  Shi, Xin;  Liu, Kaixuan;  Wang, Yun
  |  收藏  |  浏览/下载:27/0  |  提交时间:2023/03/20
Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations 期刊论文  OAI收割
Systems Science & Control Engineering, 2017, 卷号: -, 期号: Issue, 页码: -
作者:  
Qiao H(乔红);  L. Hu
  |  收藏  |  浏览/下载:33/0  |  提交时间:2018/01/04
Editorial: Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations 期刊论文  OAI收割
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 卷号: 10
作者:  
Qiao, Hong;  Hu, Li
收藏  |  浏览/下载:50/0  |  提交时间:2017/02/14
Editorial: Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations 期刊论文  OAI收割
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 卷号: 10, 期号: 0, 页码: 1-3
作者:  
Qiao, Hong;  Hu, Li
收藏  |  浏览/下载:57/0  |  提交时间:2017/02/13
Computational Primitives of Visual Perception", Proceeding of the International Conference on Image Processing 会议论文  OAI收割
Cairo, Egypt, 2009
作者:  
Yongzhen Huang;  Kaiqi Huang;  Tieniu Tan
  |  收藏  |  浏览/下载:21/0  |  提交时间:2016/12/30
Real time tracking by LOPF algorithm with mixture model (EI CONFERENCE) 会议论文  OAI收割
MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, November 15, 2007 - November 17, 2007, Wuhan, China
Meng B.; Zhu M.; Han G.; Wu Z.
收藏  |  浏览/下载:27/0  |  提交时间:2013/03/25
A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently  we first use Sobel algorithm to extract the profile of the object. Then  we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones  in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise  the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here  we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.