中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
自动化研究所 [4]
长春光学精密机械与物... [1]
心理研究所 [1]
采集方式
OAI收割 [6]
内容类型
期刊论文 [4]
会议论文 [2]
发表日期
2023 [1]
2017 [1]
2016 [2]
2009 [1]
2007 [1]
学科主题
筛选
浏览/检索结果:
共6条,第1-6条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
CPRM: Color perception and representation model for fabric image based on color sensitivity of human visual system
期刊论文
OAI收割
TEXTILE RESEARCH JOURNAL, 2023, 页码: 15
作者:
Zhao, Xueqing
;
Yang, Han
;
Shi, Xin
;
Liu, Kaixuan
;
Wang, Yun
  |  
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2023/03/20
Color perception
color representation
fabric image
color sensitive function
visual computational model
color contrast
Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations
期刊论文
OAI收割
Systems Science & Control Engineering, 2017, 卷号: -, 期号: Issue, 页码: -
作者:
Qiao H(乔红)
;
L. Hu
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2018/01/04
Computational Modeling
Biological Mechanism
Visual Cortex
Pain Prediction
Bio-inspired Model
Machine Learning
Neural Networks
Editorial: Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations
期刊论文
OAI收割
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 卷号: 10
作者:
Qiao, Hong
;
Hu, Li
收藏
  |  
浏览/下载:50/0
  |  
提交时间:2017/02/14
computational modeling
biological mechanism
visual cortex
pain prediction
bio-inspired model
machine learning
neural networks
Editorial: Modeling of Visual Cognition, Body Sense, Motor Control and Their Integrations
期刊论文
OAI收割
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 卷号: 10, 期号: 0, 页码: 1-3
作者:
Qiao, Hong
;
Hu, Li
收藏
  |  
浏览/下载:57/0
  |  
提交时间:2017/02/13
computational modeling
biological mechanism
visual cortex
pain prediction
bio-inspired model
machine learning
neural networks
Computational Primitives of Visual Perception", Proceeding of the International Conference on Image Processing
会议论文
OAI收割
Cairo, Egypt, 2009
作者:
Yongzhen Huang
;
Kaiqi Huang
;
Tieniu Tan
  |  
收藏
  |  
浏览/下载:21/0
  |  
提交时间:2016/12/30
Computational Model
descriptor
visual Perception
Real time tracking by LOPF algorithm with mixture model (EI CONFERENCE)
会议论文
OAI收割
MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, November 15, 2007 - November 17, 2007, Wuhan, China
Meng B.
;
Zhu M.
;
Han G.
;
Wu Z.
收藏
  |  
浏览/下载:27/0
  |  
提交时间:2013/03/25
A new particle filter-the Local Optimum Particle Filter (LOPF) algorithm is presented for tracking object accurately and steadily in visual sequences in real time which is a challenge task in computer vision field. In order to using the particles efficiently
we first use Sobel algorithm to extract the profile of the object. Then
we employ a new Local Optimum algorithm to auto-initialize some certain number of particles from these edge points as centre of the particles. The main advantage we do this in stead of selecting particles randomly in conventional particle filter is that we can pay more attentions on these more important optimum candidates and reduce the unnecessary calculation on those negligible ones
in addition we can overcome the conventional degeneracy phenomenon in a way and decrease the computational costs. Otherwise
the threshold is a key factor that affecting the results very much. So here we adapt an adaptive threshold choosing method to get the optimal Sobel result. The dissimilarities between the target model and the target candidates are expressed by a metric derived from the Bhattacharyya coefficient. Here
we use both the counter cue to select the particles and the color cur to describe the targets as the mixture target model. The effectiveness of our scheme is demonstrated by real visual tracking experiments. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident when the target encountering the occlusion in real video where the standard particle filter usually fails.