中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
首页
机构
成果
学者
登录
注册
登陆
×
验证码:
换一张
忘记密码?
记住我
×
校外用户登录
CAS IR Grid
机构
计算技术研究所 [2]
长春光学精密机械与物... [2]
心理研究所 [2]
自动化研究所 [1]
沈阳自动化研究所 [1]
西安光学精密机械研究... [1]
更多
采集方式
OAI收割 [9]
内容类型
期刊论文 [6]
会议论文 [3]
发表日期
2023 [1]
2021 [1]
2020 [1]
2013 [1]
2012 [1]
2010 [2]
更多
学科主题
电子、电信技术::信... [1]
电子、电信技术::计... [1]
认知心理学 [1]
筛选
浏览/检索结果:
共9条,第1-9条
帮助
条数/页:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
排序方式:
请选择
题名升序
题名降序
提交时间升序
提交时间降序
作者升序
作者降序
发表日期升序
发表日期降序
Repetition Suppression for Familiar Visual Words Through Acceleration of Early Processing
期刊论文
OAI收割
BRAIN TOPOGRAPHY, 2023, 页码: 13
作者:
Maurer, Urs
;
Rometsch, Sarah
;
Song, Bingbing
;
Zhao, Jing
;
Zhao, Pei
  |  
收藏
  |  
浏览/下载:20/0
  |  
提交时间:2023/12/18
Visual word processing
Repetition suppression
Chinese
EEG reference
Microstate analysis
Structured Computational Modeling of Human Visual System for No-reference Image Quality Assessment
期刊论文
OAI收割
International Journal of Automation and Computing, 2021, 卷号: 18, 期号: 2, 页码: 204-218
作者:
Wen-Han Zhu
;
Wei Sun
  |  
收藏
  |  
浏览/下载:33/0
  |  
提交时间:2021/04/22
Image quality assessment (IQA)
no-reference (NR)
structural computational modeling
human visual system
visual feature extraction
Textual-Visual Reference-Aware Attention Network for Visual Dialog
期刊论文
OAI收割
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 卷号: 29, 页码: 6655-6666
作者:
Guo, Dan
;
Wang, Hui
;
Wang, Shuhui
;
Wang, Meng
  |  
收藏
  |  
浏览/下载:29/0
  |  
提交时间:2020/12/10
Visual dialog
attention network
textual reference
visual reference
multimodal semantic interaction
A Local Image Enhancement Method Based on Adjacent Pixel Gray Order-preserving Principle
会议论文
OAI收割
5th International Symposium on Photoelectronic Detection and Imaging (ISPDI) - Infrared Imaging and Applications, Beijing, June 25-27, 2013
作者:
Fan XP(范晓鹏)
;
Cai TF(蔡铁峰)
;
Zhu F(朱枫)
收藏
  |  
浏览/下载:40/0
  |  
提交时间:2013/12/26
The paper is committed in local image enhancement. At first, the authors propose an adjacent pixel gray order-preserving principle. Adjacent pixel gray order-preserving principle is the basement of local enhancement method which ensures that there is no distortion in processed image. And then, the authors propose an iterative algorithm, which could stretch gray-scale difference of adjacent pixels in premise of not changing gray magnitude relationship between adjacent pixels. At last, the authors propose a totally reference image quality assessment method based on adjacent pixel gray order-preserving principle. According to this quality assessment method, the authors made a set of comparative experiments with local histogram equalization and method. Experimental results show that the proposed enhancement method can get higher score and provide better visual effects, fully demonstrating its effectiveness. According to this quality assessment method, the proposed method shows a good effectiveness, through experimental results and comparison with local histogram equalization method.
Image quality assessment based on complex representation of structure information (EI CONFERENCE)
会议论文
OAI收割
2011 International Conference on Electrical, Information Engineering and Mechatronics, EIEM 2011, December 23, 2011 - December 25, 2011, Jiaozuo, Henan, China
作者:
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:30/0
  |  
提交时间:2013/03/25
Local variance and single pixel value are combined to describe image structure information using complex method in this paper in order to improve the consistency of objective image assessment result with that of subjective method. The effect of the detail structure information on the image quality was emphasized by this method accordingly. Singular value decomposition was performed on local variance distribution complex matrix. The angle between the singular value vectors of the reference image and the disturbed image was used to measure their structural similarity. Then the quality assessment process was achieved. Results from experiments show that the proposed method is better consistent with human visual system characteristics than MSE
PSNR
and SSIM. 2012 Springer-Verlag London Limited.
Visual-Context Boosting for Eye Detection
期刊论文
OAI收割
ieee transactions on systems man and cybernetics part b-cybernetics, 2010, 卷号: 40, 期号: 6, 页码: 1460-1467
作者:
Song, Mingli
;
Tao, Dacheng
;
Sun, Zhuo
;
Li, Xuelong
收藏
  |  
浏览/下载:145/16
  |  
提交时间:2011/01/11
Eye detection
region of reference (ROR)
visual object detection
Visual quality assessment for web videos
期刊论文
OAI收割
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2010, 卷号: 21, 期号: 8, 页码: 826-837
作者:
Xia, Tian
;
Mei, Tao
;
Hua, Gang
;
Zhang, Yong-Dong
;
Hua, Xian-Sheng
  |  
收藏
  |  
浏览/下载:22/0
  |  
提交时间:2019/12/16
Visual quality assessment
Web video
Non-reference
Domain specific
Intrinsic frames of reference and egocentric viewpoints in scene recognition
期刊论文
OAI收割
COGNITION, 2008, 卷号: 106, 期号: 2, 页码: 750-769
作者:
Mou, Welmin
;
Fan, Yanli
;
McNamara, Timothy P.
;
Owen, Charles B.
;
Weimin Mou
  |  
收藏
  |  
浏览/下载:25/0
  |  
提交时间:2011/08/22
scene recognition
intrinsic frame of reference
egocentric viewpoint
spatial memory
visual memory
Color image quality assessment based on quaternion singular value decomposition (EI CONFERENCE)
会议论文
OAI收割
1st International Congress on Image and Signal Processing, CISP 2008, May 27, 2008 - May 30, 2008, Sanya, Hainan, China
作者:
Liu W.
;
Wang Y.
;
Wang Y.
;
Wang Y.
;
Wang Y.
收藏
  |  
浏览/下载:18/0
  |  
提交时间:2013/03/25
An effective assessment method for color image is proposed. It is based on the quaternion description for the structural information of color image. The local variance of the luminance layer of color image is taken as the real part of a quaternion
then the three RGB channels of the color image are encoded into the three imaginary parts of the quaternion. The angle between the singular value feature vectors of the quaternion matrices correspond to the reference image and the distorted image is used to measure the structural similarity of the two images. Results from experiments show that the proposed method is better consistent with the human visual characteristics than MSE
PSNR and SSIM. The images whose size is different from that of the reference image can also be assessed by this method. 2008 IEEE.