光诱导微纳一体化制造方法及其应用
文献类型:学位论文
作者 | 刘娜![]() |
学位类别 | 博士 |
答辩日期 | 2015-11-26 |
授予单位 | 中国科学院沈阳自动化研究所 |
授予地点 | 中国科学院沈阳自动化研究所 |
导师 | 李文荣 ; 刘连庆 |
关键词 | 光诱导电液动力学 光诱导介电泳力 微纳米材料的操控和装配 光诱导电沉积 法拉第反应 微纳器件制造 |
其他题名 | An Optically-controlled patterning method for micro/nano devices fabrication |
学位专业 | 机械电子工程 |
中文摘要 | 本文针对微纳器件和系统的发展需求,结合机器人学技术,提出并研究了一套能够实现多种微纳结构加工功能和装配功能的光诱导微纳一体化制造方法。围绕该方法技术,主要开展并完成了以下研究工作:(1) 光诱导一体化制造原理研究通过深入研究光诱导芯片中光能、电能、机械能和化学能之间的转换过程和机制,分别确立了两条微纳结构加工的机制:一是光诱导电液动力学机制,将施加在芯片上的光能和电能转换为驱动芯片内部微纳米材料(生物细胞、碳纳米管、纳米颗粒)的机械能。通过控制驱动力的方向,实现微纳米材料的定向移动和定位沉积过程,进而实现基于微纳米材料的功能结构加工和装配。另一条是光诱导电极反应机制,将施加在芯片上的光能和电能转换为驱动溶液内部离子或分子发生反应的化学能。通过控制电极反应区域和速率,可以实现分子或离子的定位反应和定量反应,进而实现多种微纳功能结构单元的三维可控加工和装配。(2) 光诱导一体化制造方法研究基于上述两种机制,建立了光诱导制造芯片的等效电路模型,并利用有限元仿真方法,分别研究和讨论了外加交流电压频率、外加交流电压幅值、溶液电导率和浓度对光诱导电极反应过程和光诱导电液动力学过程的影响和作用,得出了两条机制的适用对象和控制方法。(3) 基于纳米材料的微纳功能结构制造研究基于光诱导电液动力学机制,以多壁碳纳米管和纳米导电聚苯胺颗粒的混合溶液为加工原材料,研究了交流电流频率,加工时间和原料配比对加工的微纳结构的形貌、电特性参数和传感性能的影响,验证了光诱导一体化制造方法能够实现基于微纳米材料的结构加工和装配。(4) 基于分子和离子的微纳功能结构制造研究基于光诱导电极反应机制,以金属盐溶液和生物分子溶液为加工原料,深入研究了沉积时间、外加信号频率、溶液浓度和电导率对结构加工过程及结构质量的影响,分别实现了金属微结构、半导体薄膜及生物材料三维结构的可控加工。(5) 微纳器件的光诱导一体化制造过程基于上述研究,结合微流控自动换液技术、光诱导电液动力学机制和光诱导电极反应机制,提出了集成多个功能结构单元加工和装配的光诱导一体化制造方法,并成功实现了基于CuO纳米线、氧化锌薄膜和单壁碳纳米管的场效应器件的批量化、一体化制造过程。 |
英文摘要 | Based on the requiremens and shortage, this dissertation has developed an optically-induced incorporated fabrication methods, enabling efficient fabrication and assembly of kinds of materials. To develop this method, we have done following works: (1) Mechanism of optically-induced fabrication method. In the optically-controlled fabrication chip, two mechanisms could be optionally applied for devices fabrication. One is the optically-controlled electrochemical reactions, which are processes converting optical energy and electrical energy into chemical energy. Utilizing this mechanism, objective ions in solution layer could be assembled into arbitrary micro/nano structures through a series of chemical reactions. Another one is optically-induced electrokinetics, which are processes converting optical energy and electrical energy into kinetic energy. Leveraging this mechanism, suspended objects in micro/nano scale could be manipulated and assembled in a high-efficiency way. (2) Effects on the fabrication process. Based on these two mechanisms, we have built an equivalent circuit model of the chip to analyze the effects of alternating current (AC) frequency, AC voltage amplitude and solution composition on the fabrication process. (3) Fabricating elements through manipulating and assembling nanomaterials. The automatic, large-scale and high-efficiency manipulation and assembly of composite nanomaterials (carbon nanotubes and conducting polyaniline nano particles) have been realized based on the mechanism of optically-induced electrokinetics. (4) Fabricating elements though assembling ions and molecules. Utilizing the optically-induced chemical reaction mechanism, we have realized the fabrication and patterning of various structures based on kinds of materials such as metal, semiconductor and biopolymer. (5) Devices fabrication based on optically-induced incorporated fabrication method. We have successfully integrated the micro fluidic system with the optically induced fabrication chip. Combining the micro fluidic system for automated solution change, the optically-induced electrokinetics phenomenon for nanomaterial manipulation/assembly and optically-induced electrode chemical reaction for micro/nano structures fabrication, we have successfully realized the high-efficiency, cost-efficient, large-scale fabrication of micro/nano devices based on copper oxide (CuO) nanowires, zinc oxide (ZnO) films and single wall nanotubes (SWNTs). |
语种 | 中文 |
公开日期 | 2015-12-27 |
产权排序 | 1 |
页码 | 136页 |
源URL | [http://ir.sia.ac.cn/handle/173321/17530] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
推荐引用方式 GB/T 7714 | 刘娜. 光诱导微纳一体化制造方法及其应用[D]. 中国科学院沈阳自动化研究所. 中国科学院沈阳自动化研究所. 2015. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。