中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Corrosion pitting damage detection of rolling bearings using data mining techniques

文献类型:期刊论文

作者Zhang YL(章永来); Zhou XF(周晓锋); Shi HB(史海波); Zheng ZY(郑泽宇); Li S(李帅)
刊名International Journal of Modelling, Identification and Control
出版日期2015
卷号24期号:3页码:235-243
关键词machine learning, rolling bearings corrosion pitting support vector data description SVDD, principal component analysis PCA
ISSN号1746-6172
产权排序1
中文摘要Detection of rolling bearings is very crucial for the reliable operation in the process of condition monitoring of rotating machinery. In this paper, a novel monitoring method using support vector data description (SVDD) with principal component analysis (PCA) for fault diagnosis of corrosion pitting on the raceways and balls in rolling bearings is proposed to improve diagnostic accuracy based on feature extraction dataset of vibration signals. The feasibility and validity of the proposed monitoring scheme are investigated through case study. Experiment results show that the proposed method can achieve 92.85% accuracy, 93.11% sensitivity, and 90.47% specificity based on an unbalanced dataset.
收录类别EI
语种英语
源URL[http://ir.sia.cn/handle/173321/17292]  
专题沈阳自动化研究所_数字工厂研究室
推荐引用方式
GB/T 7714
Zhang YL,Zhou XF,Shi HB,et al. Corrosion pitting damage detection of rolling bearings using data mining techniques[J]. International Journal of Modelling, Identification and Control,2015,24(3):235-243.
APA Zhang YL,Zhou XF,Shi HB,Zheng ZY,&Li S.(2015).Corrosion pitting damage detection of rolling bearings using data mining techniques.International Journal of Modelling, Identification and Control,24(3),235-243.
MLA Zhang YL,et al."Corrosion pitting damage detection of rolling bearings using data mining techniques".International Journal of Modelling, Identification and Control 24.3(2015):235-243.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。