中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive square-root CKF with application to DR/LBL integrated heading estimation for HOV

文献类型:会议论文

作者Liu KZ(刘开周); Liu B(刘本); Wang YY(王艳艳); Zhao Y(赵洋); Cui SG(崔胜国); Feng XS(封锡盛)
出版日期2015
会议名称27th Chinese Control and Decision Conference, CCDC 2015
会议日期May 23-25, 2015
会议地点Qingdao, China
关键词DR/LBL Heading Estimation maximum a posterior Human Occupied Vehicle Adaptive Square-root Cubature Kalman filter
页码1851-1855
中文摘要Dead Reckoning (DR) and Long Base Line (LBL) are a modern method in navigation of Human Occupied Vehicles (HOV). However, the accuracy of DR system would degrade sharply, and due to the obvious error drifts of each unit involved in DR. LBL has the disadvantage of low update frequency. To improve the heading estimation of DR/LBL, this paper proposes an innovative method which could adjust state error variance matrix Q in real time dynamically. Square-root Cubature Kalman filter (SR-CKF) is used to simulate the convergence of the dynamic model of DR. And, Sage-Husa maximum a posterior (MAP) is employed in filtering progress. The simulation results of the adaptive SR-CKF and CKF are compared, which show that the method proposed in this paper can obtain a fairly accurate heading estimation.
收录类别EI ; CPCI(ISTP)
产权排序1
会议录Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015
会议录出版者IEEE
会议录出版地Piscataway, NJ, USA
语种英语
ISBN号978-1-4799-7016-2
WOS记录号WOS:000375232903035
源URL[http://ir.sia.cn/handle/173321/17188]  
专题沈阳自动化研究所_水下机器人研究室
推荐引用方式
GB/T 7714
Liu KZ,Liu B,Wang YY,et al. Adaptive square-root CKF with application to DR/LBL integrated heading estimation for HOV[C]. 见:27th Chinese Control and Decision Conference, CCDC 2015. Qingdao, China. May 23-25, 2015.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。