Self-Adaptive Multiple Evolution algorithms for Image Segmentation using Multilevel Thresholding
文献类型:会议论文
作者 | Sun LL(孙丽玲)![]() ![]() |
出版日期 | 2015 |
会议名称 | 10th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2015) |
会议日期 | September 25-28, 2015 |
会议地点 | Hefei, China |
关键词 | Multiple evolution algorithms Multilevel threshold Image segmentation |
页码 | 400-410 |
中文摘要 | Multilevel thresholding based on Otsu method is one of the most popular image segmentation techniques. However, when the number of thresholds increases, the consumption of CPU time grows exponentially. Although the evolution algorithms are helpful to solve this problem, for the high-dimensional problems, the Otsu methods based on the classical evolution algorithms may get trapped into local optimal or be instability due to the inefficiency of local search. To overcome such drawback, this paper employs the self-adaptive multiple evolution algorithms (MEAs), which automatically protrudes the core position of the excellent algorithm among the selected algorithms. The tests against 10 benchmark functions demonstrate that this multi-algorithms is fit for most problems. Then, this optimizer is applied to image multilevel segmentation problems. Experimental results on a variety of images provided by the Berkeley Segmentation Database show that the proposed algorithm can accurately and stably solve this kind of problems. |
收录类别 | EI ; CPCI(ISTP) |
产权排序 | 1 |
会议录 | Bio-Inspired Computing -- Theories and Applications
![]() |
会议录出版者 | Springer Verlag |
会议录出版地 | Berlin |
语种 | 英语 |
ISSN号 | 1865-0929 |
ISBN号 | 978-3-662-49013-6 |
WOS记录号 | WOS:000369890300036 |
源URL | [http://ir.sia.cn/handle/173321/17381] ![]() |
专题 | 沈阳自动化研究所_信息服务与智能控制技术研究室 |
推荐引用方式 GB/T 7714 | Sun LL,Hu JT,Zhang QC,et al. Self-Adaptive Multiple Evolution algorithms for Image Segmentation using Multilevel Thresholding[C]. 见:10th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2015). Hefei, China. September 25-28, 2015. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。