中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Self-Adaptive Multiple Evolution algorithms for Image Segmentation using Multilevel Thresholding

文献类型:会议论文

作者Sun LL(孙丽玲); Hu JT(胡静涛); Zhang QC(张巧翠); Chen HN(陈瀚宁)
出版日期2015
会议名称10th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2015)
会议日期September 25-28, 2015
会议地点Hefei, China
关键词Multiple evolution algorithms Multilevel threshold Image segmentation
页码400-410
中文摘要Multilevel thresholding based on Otsu method is one of the most popular image segmentation techniques. However, when the number of thresholds increases, the consumption of CPU time grows exponentially. Although the evolution algorithms are helpful to solve this problem, for the high-dimensional problems, the Otsu methods based on the classical evolution algorithms may get trapped into local optimal or be instability due to the inefficiency of local search. To overcome such drawback, this paper employs the self-adaptive multiple evolution algorithms (MEAs), which automatically protrudes the core position of the excellent algorithm among the selected algorithms. The tests against 10 benchmark functions demonstrate that this multi-algorithms is fit for most problems. Then, this optimizer is applied to image multilevel segmentation problems. Experimental results on a variety of images provided by the Berkeley Segmentation Database show that the proposed algorithm can accurately and stably solve this kind of problems.
收录类别EI ; CPCI(ISTP)
产权排序1
会议录Bio-Inspired Computing -- Theories and Applications
会议录出版者Springer Verlag
会议录出版地Berlin
语种英语
ISSN号1865-0929
ISBN号978-3-662-49013-6
WOS记录号WOS:000369890300036
源URL[http://ir.sia.cn/handle/173321/17381]  
专题沈阳自动化研究所_信息服务与智能控制技术研究室
推荐引用方式
GB/T 7714
Sun LL,Hu JT,Zhang QC,et al. Self-Adaptive Multiple Evolution algorithms for Image Segmentation using Multilevel Thresholding[C]. 见:10th International Conference on Bio-inspired Computing: Theories and Applications (BIC-TA 2015). Hefei, China. September 25-28, 2015.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。