中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Intrusion detection algorithm based on OCSVM in industrial control system

文献类型:期刊论文

作者Shang WL(尚文利); Zeng P(曾鹏); Wan M(万明); Li L(李琳); An PF(安攀峰)
刊名Security and Communication Networks
出版日期2016
卷号9期号:10页码:1014-1049
关键词SVM intrusion detection PSO
ISSN号1939-0114
产权排序1
通讯作者曾鹏
中文摘要In order to detect abnormal communication behaviors efficiently in today's industrial control system, a new intrusion detection algorithm based on One-Class Support Vector Machine (OCSVM) is proposed in this paper. In this algorithm, a normal communication behavior model is established by using OCSVM, and the Particle Swarm Optimization algorithm is designed to optimize OCSVM model parameters. Furthermore, we adopt the normal Modbus function code sequence to train OCSVM model, and then use this model to detect abnormal Modbus TCP traffic. Our simulation results show that the proposed algorithm not only is efficient and reliable but also meets the real-time requirements of anomaly detection in industrial control system.
收录类别SCI ; EI
语种英语
WOS记录号WOS:000379052200009
源URL[http://ir.sia.cn/handle/173321/17603]  
专题沈阳自动化研究所_工业控制网络与系统研究室
推荐引用方式
GB/T 7714
Shang WL,Zeng P,Wan M,et al. Intrusion detection algorithm based on OCSVM in industrial control system[J]. Security and Communication Networks,2016,9(10):1014-1049.
APA Shang WL,Zeng P,Wan M,Li L,&An PF.(2016).Intrusion detection algorithm based on OCSVM in industrial control system.Security and Communication Networks,9(10),1014-1049.
MLA Shang WL,et al."Intrusion detection algorithm based on OCSVM in industrial control system".Security and Communication Networks 9.10(2016):1014-1049.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。