中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于PCNN的面粉麸星检测方法

文献类型:期刊论文

作者陈天飞; 吴翔; 刘楠嶓; 李秀娟
刊名中国粮油学报
出版日期2015
卷号30期号:12页码:136-139
关键词视觉检测 面粉麸星 灰度熵变换 PCNN
ISSN号1003-0174
其他题名Bran Specks Detection Approach Based on PCNN
产权排序1
中文摘要面粉加工过程中麸星数目的多少直接影响着面粉的品质等级,为此,本研究提出了一种基于脉冲耦合神经网络(PCNN)的图像处理方法实现对面粉中微小麸星的视觉检测。首先,该方法对采集的面粉图像进行局部灰度熵变换并通过比例映射生成熵值图像,从而完成了原始面粉图像的图像增强。然后,在图像增强的基础上,利用PCNN对熵值图像进行迭代处理,并通过最小交叉熵确定最优迭代次数,完成最终的麸星目标分割。最后试验验证了该方法的有效性,对比结果表明该方法的检测灵敏度提高近2倍,且算法运行时间为5.189 3s,具有较高的执行效率。
英文摘要Due to the fact that the number of bran specks has directly influence on the flour quality level,so a novel detection approach based on pulse coupled neural network ( PCNN) was proposed so as to achieve vision detection for tiny bran specks in flour.Firstly,the local grey scale entropy transformation was carried on for the original captured image,and the entropy image was formed through proportional mapping,so the bran specks in flour could be enhanced in the entropy image.Secondly,on the basis of image enhancement,the PCNN was applied on the entropy image,and final segmentation results can be obtained after iterative processing,while the optimal number of iterations was determined by the minimum cross entropy.Finally,the actual experimental results demonstrated that the proposed method was effective,and its detection sensitivity was improved nearly twice.In addition,the method runs for 5. 189 3s,and has better execution efficiency.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5606378
源URL[http://ir.sia.cn/handle/173321/17625]  
专题沈阳自动化研究所_装备制造技术研究室
推荐引用方式
GB/T 7714
陈天飞,吴翔,刘楠嶓,等. 基于PCNN的面粉麸星检测方法[J]. 中国粮油学报,2015,30(12):136-139.
APA 陈天飞,吴翔,刘楠嶓,&李秀娟.(2015).基于PCNN的面粉麸星检测方法.中国粮油学报,30(12),136-139.
MLA 陈天飞,et al."基于PCNN的面粉麸星检测方法".中国粮油学报 30.12(2015):136-139.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。