中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
UDSFS: Unsupervised deep sparse feature selection

文献类型:期刊论文

作者Cong Y(丛杨); Wang S(王帅); Fan BJ(范保杰); Yang YS(杨云生); Yu HB(于海斌)
刊名Neurocomputing
出版日期2016
卷号196页码:150-158
关键词Deep sparse Feature selection Machine learning Group sparsity Computer aided diagnosis
ISSN号0925-2312
产权排序1
通讯作者丛杨
中文摘要In this paper, we focus on unsupervised feature selection. As we have known, the combination of several feature units into a whole feature vector is broadly adopted for effective object representation, which may inevitably includes some irrelevant/redundant feature units or feature dimensions. Most of the traditional feature selection models can only select the feature dimensions without concerning the intrinsic relationship among different feature units. By taking into consideration the group sparsity of feature dimensions and feature units based on an 2,1 minimization, we propose a new unsupervised feature selection model, unsupervised deep sparse feature selection (UDSFS) in this paper. In comparison with the state-of-the-arts, our UDSFS model can not only select the most discriminative feature units but also assign proper weight to the useful feature dimensions concurrently; moreover, the efficiency and robustness of our UDSFS can be also improved without extracting the discarded irrelevant feature units. For model optimization, we introduce an efficient iterative algorithm to solve the non-smooth, convex model and obtain a global optimization with the convergence rate as O(1/K2) (K is the iteration number). For the experiments, a new medical endoscopic image dataset, Abnormal Endoscopic Image Detection dataset (AEID), is built for evaluation; we also test our model using two public UCI datasets. Various experiments and comparisons with other state-of-the-arts justified the effectiveness and efficiency of our UDSFS model. © 2016 Elsevier B.V.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
关键词[WOS]SUPERVISED FEATURE-SELECTION ; MANIFOLD REGULARIZATION ; FACE RECOGNITION ; INFORMATION ; FRAMEWORK
收录类别SCI ; EI
语种英语
WOS记录号WOS:000376543200016
源URL[http://ir.sia.cn/handle/173321/17832]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Cong Y,Wang S,Fan BJ,et al. UDSFS: Unsupervised deep sparse feature selection[J]. Neurocomputing,2016,196:150-158.
APA Cong Y,Wang S,Fan BJ,Yang YS,&Yu HB.(2016).UDSFS: Unsupervised deep sparse feature selection.Neurocomputing,196,150-158.
MLA Cong Y,et al."UDSFS: Unsupervised deep sparse feature selection".Neurocomputing 196(2016):150-158.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。