Target tracking based on non-linear kernel density estimation and Kalman filter
文献类型:会议论文
作者 | Wu Y(吴阳); Zhou XF(周晓锋)![]() ![]() |
出版日期 | 2015 |
会议名称 | 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) |
会议日期 | June 8-12, 2015 |
会议地点 | Shenyang, China |
关键词 | target tracking non-linear kernel density estimation Mean Shift Kalman filter |
页码 | 462-466 |
中文摘要 | This paper chooses Mean Shift algorithm to track target based on non-linear kernel density estimation and Kalman filter. Kernel density estimation is a probability density estimation method, which is used to detect moving target and update the target color histogram. The interest targets are obtained by labeling connected region in the detected binary image. Kalman filtering is employed to predict the position of the target being tracked, giving a starting searching window for Mean Shift tracking. Experimental results show that the method proposed is effective and fast in implementation, which satisfies the real-time requirement, it is capable of handling occlusion problem, meanwhile it is robust against the effects of unstable scene illumination. |
收录类别 | EI ; CPCI(ISTP) |
产权排序 | 2 |
会议录 | 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)
![]() |
会议录出版者 | IEEE |
会议录出版地 | Piscataway, NJ, USA |
语种 | 英语 |
ISSN号 | 2379-7711 |
ISBN号 | 978-1-4799-8730-6 |
WOS记录号 | WOS:000380502300089 |
源URL | [http://ir.sia.cn/handle/173321/18529] ![]() |
专题 | 沈阳自动化研究所_数字工厂研究室 |
推荐引用方式 GB/T 7714 | Wu Y,Zhou XF,Zhang YC. Target tracking based on non-linear kernel density estimation and Kalman filter[C]. 见:2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China. June 8-12, 2015. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。