中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Target tracking based on non-linear kernel density estimation and Kalman filter

文献类型:会议论文

作者Wu Y(吴阳); Zhou XF(周晓锋); Zhang YC(张宜弛)
出版日期2015
会议名称2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)
会议日期June 8-12, 2015
会议地点Shenyang, China
关键词target tracking non-linear kernel density estimation Mean Shift Kalman filter
页码462-466
中文摘要This paper chooses Mean Shift algorithm to track target based on non-linear kernel density estimation and Kalman filter. Kernel density estimation is a probability density estimation method, which is used to detect moving target and update the target color histogram. The interest targets are obtained by labeling connected region in the detected binary image. Kalman filtering is employed to predict the position of the target being tracked, giving a starting searching window for Mean Shift tracking. Experimental results show that the method proposed is effective and fast in implementation, which satisfies the real-time requirement, it is capable of handling occlusion problem, meanwhile it is robust against the effects of unstable scene illumination.
收录类别EI ; CPCI(ISTP)
产权排序2
会议录2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER)
会议录出版者IEEE
会议录出版地Piscataway, NJ, USA
语种英语
ISSN号2379-7711
ISBN号978-1-4799-8730-6
WOS记录号WOS:000380502300089
源URL[http://ir.sia.cn/handle/173321/18529]  
专题沈阳自动化研究所_数字工厂研究室
推荐引用方式
GB/T 7714
Wu Y,Zhou XF,Zhang YC. Target tracking based on non-linear kernel density estimation and Kalman filter[C]. 见:2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Shenyang, China. June 8-12, 2015.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。