中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning a generative classifier from label proportions

文献类型:期刊论文

作者Fan, Kai1; Zhang, Hongyi1; Yan, Songbai1; Wang, Liwei1; Zhang, Wensheng2; Feng, Jufu1
刊名NEUROCOMPUTING
出版日期2014-09-02
卷号139页码:47-55
关键词Proportion learning Bayesian model Restricted Boltzmann machine
英文摘要Learning a classifier when only knowing the features and marginal distribution of class labels in each of the data groups is both theoretically interesting and practically useful. Specifically, we consider the case in which the ratio of the number of data instances to the number of classes is large. We prove sample complexity upper bound in this setting, which is inspired by an analysis of existing algorithms. We further formulate the problem in a density estimation framework to learn a generative classifier. We also develop a practical RBM-based algorithm which shows promising performance on benchmark datasets. (C) 2014 Elsevier B.V. All rights reserved.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence
研究领域[WOS]Computer Science
收录类别SCI
语种英语
WOS记录号WOS:000337661800006
源URL[http://ir.ia.ac.cn/handle/173211/10748]  
专题精密感知与控制研究中心_精密感知与控制
作者单位1.Peking Univ, Sch Elect Engn & Comp Sci, MOE, Key Lab Machine Percept, Beijing, Peoples R China
2.Chinese Acad Sci, Inst Automat, Beijing 100864, Peoples R China
推荐引用方式
GB/T 7714
Fan, Kai,Zhang, Hongyi,Yan, Songbai,et al. Learning a generative classifier from label proportions[J]. NEUROCOMPUTING,2014,139:47-55.
APA Fan, Kai,Zhang, Hongyi,Yan, Songbai,Wang, Liwei,Zhang, Wensheng,&Feng, Jufu.(2014).Learning a generative classifier from label proportions.NEUROCOMPUTING,139,47-55.
MLA Fan, Kai,et al."Learning a generative classifier from label proportions".NEUROCOMPUTING 139(2014):47-55.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。