中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network

文献类型:期刊论文

作者Wang, Yunpeng; Cheng, Long; Hou, ZengGuang; Yu, Junzhi; Tan, Min
刊名IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
出版日期2016-02-01
卷号27期号:2页码:322-333
关键词Combinational optimization problem multirobot system optimal formation recurrent neural network shape theory
通讯作者Cheng, Long
英文摘要The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formationmeans that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formationcan also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.
WOS标题词Science & Technology ; Technology
类目[WOS]Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
研究领域[WOS]Computer Science ; Engineering
关键词[WOS]NONLINEAR VARIATIONAL-INEQUALITIES ; CONVEX-OPTIMIZATION PROBLEMS ; NONHOLONOMIC MOBILE ROBOTS ; CONSTRAINED OPTIMIZATION ; COOPERATIVE CONTROL ; PREDICTIVE CONTROL ; STRATEGIES
收录类别SCI
语种英语
WOS记录号WOS:000372020500011
源URL[http://ir.ia.ac.cn/handle/173211/11370]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
作者单位State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
推荐引用方式
GB/T 7714
Wang, Yunpeng,Cheng, Long,Hou, ZengGuang,et al. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2016,27(2):322-333.
APA Wang, Yunpeng,Cheng, Long,Hou, ZengGuang,Yu, Junzhi,&Tan, Min.(2016).Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,27(2),322-333.
MLA Wang, Yunpeng,et al."Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 27.2(2016):322-333.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。