中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
下肢外骨骼助力机器人系统设计与控制方法研究

文献类型:学位论文

作者薛增飞
学位类别硕士
答辩日期2016-05-25
授予单位中国科学院沈阳自动化研究所
导师赵新刚
关键词下肢助力外骨骼 结构设计 控制方法 康复机器人系统
其他题名RESEARCH ON DESIGN AND CONTROL OF REHABILITATION ROBOT FOR LOWERLIMB
学位专业机械制造及其自动化
中文摘要随着我国老龄化趋势的加剧,中风等脑血管疾病的发病率呈现增长的趋势,造成肢体运动功能障碍等后遗症的患者数量逐年增加。针对此类患者目前行之有效的治疗方法是大量且系统的康复训练。下肢助力外骨骼机器人是一种帮助下肢运动功能障碍的患者恢复和重建行走能力的机器人系统,是机器人技术与传统康复训练结合的产物。外骨骼机器人解决了目前我国专业康复治疗师少、治疗模式单一等弊端,降低了康复医师的治疗强度,提高了康复效率。本文面向下肢运动康复,提出了一种下肢助力康复机器人系统,开展了下肢助力外骨骼的结构设计、控制系统集成、控制方法验证等研究工作。具体研究内容如下:(1)根据人体的下肢正常运动的参数,确定下肢助力外骨骼机器人的设计参数,包括各关节自由度的分配、关节的运动范围、关节驱动力矩、各连杆的长度范围等。通过对常用的传动机构的分析对比选择传动机构的形式,并按照拟人化的要求设计了下肢外骨骼的整体机构。机器人系统整体包括10个自由度,其中4个伺服电机驱动的主动自由度。通过脚底压力传感器来获得人体重心等信息,为步态控制提供依据。(2)利用运动捕获系统来获得人体运动时的关节数据,将人体运动步态周期分为站立相、摆动相等状态。用D-H方法,对外骨骼进行运动学建模,分析末端踝关节的位姿与各个关节转角的关系。用Lagrange法对机器人进行动力学建模,为运动控制提供理论依据。根据康复运动需要,对机器人采用位置控制,并进一步设计了外骨骼机器人步态控制策略,通过仿真分析了控制器的性能。(3)最后,搭建了下肢助力外骨骼机器人平台。构建了基于QNX实时系统的控制系统框架,开展了不同速度的步态轨迹跟踪试验,验证了机器人结构的合理性和控制方法的可行性。综上,本文从系统整体结构设计出发,完成了结构设计,控制系统集成,控制方法验证等方面的工作。建立了完整的下肢助力外骨骼机器人系统,为进行患者下肢康复提供了平台基础。
英文摘要The incidence rate of cerebrovascular disease, like stroke, is increasing with the growth of aging population. Consequently, the number of patients with limb motor function disorders is increasing year by year. Nowadays, Plenty and systematic rehabilitation training is an effective treatment for such patients. Lower limbs exoskeleton robot booster is a robotic system, which can help lower limb disabled patients recover and rebuild movement ability. It is a novel robotic system combined with traditional rehabilitation training methods. Traditional rehabilitation training methods have several problems, such as less professional rehabilitation therapists, monotonous treatment modes, etc. Exoskeleton robot booster can overcome these shortcomings, and its treatment process is programmable, treatment sites can be set according to the patients’ individual needs. This paper put forwards a kind of rehabilitation robot system based on lower limbs exoskeleton robot booster, and conducted some research work about the exoskeleton robot, including mechanical design, control system hardware integration, methods of motion control, etc. They are described in detail as follows: (1) According to parameters of the normal human lower limbs movement, we can decide the design parameters of lower limbs exoskeleton robot booster, including the distribution of the degrees of freedom, joint ranges of motion, driver moment of each joint, and the length of the connecting rods. Through the analysis of commonly used actuators, we choose the form of transmission mechanism, and design the whole body of the lower limb exoskeleton robot booster according to the requirements of anthropomorphic. The rehabilitation system includs 10 degrees of freedom, four of which are driven by servo motors. We obtain the center of pressure and other information by foot pressure sensors, which provide the basis information for the gait control. (2) A motion capture system was used to obtain human joints’ data and motion information. Human's gait cycle can be divided into a stance phase and a swing phase. The kinematics model is set up by the D-H method. We also analysed the relationship between the posture of end ankle and each joint angle. It provided the theoretical basis for the motion control and specific data for robot dynamical modeling which was derived by Lagrange methods. According to the needs of actual rehabilitation training, we controlled the robot by position mode, and designed control strategy for the exoskeleton robot booster. We analysed the performance of designed controller by simulation. (3) Finally, we built the lower limbs exoskeleton robot platform, built a control system framework based on QNX real-time system, carried out some experiments of different speeds of gait trajectory tracking, and verified the rationality of the structure of the robot and the feasibility of the control methods. In conclusion, starting from the overall system structure design, this paper finished structural design, control system integration, control methods validation, etc. Lower limbs powered exoskeleton robot system was established and it provided a rehabilitation training platform for patients with lower limbs disorders.
语种中文
产权排序1
页码63页
源URL[http://ir.sia.cn/handle/173321/19681]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
薛增飞. 下肢外骨骼助力机器人系统设计与控制方法研究[D]. 中国科学院沈阳自动化研究所. 2016.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。