中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于改进蝙蝠算法的柔性流水车间排产优化问题研究

文献类型:期刊论文

作者韩忠华; 朱伯秋; 史海波; 林硕
刊名计算机应用研究
出版日期2017
卷号34期号:7
关键词柔性流水车间 蝙蝠算法 精英个体集 汉明距离
ISSN号1001-3695
其他题名Study for flexible flow shop scheduling problem with based on advanced bat algorithm
产权排序1
中文摘要为解决柔性流水车间调度问题( flexible flow shop scheduling problem,FFSP),提出了一种基于精英个体集的自适应蝙蝠算法(self-adaptive elite bat algorithm,SEBA)。针对蝙蝠算法存在求解离散问题具有局限性、易陷入局部极值、优化结果精度低等问题,该算法采用ROV(ranked order value)编码方式,使算法适用于求解离散型的FFSP问题;提出基于汉明距离的精英个体集,由多个适应度高但相似度低的精英个体轮流引导种群进化,增强种群进化活力,避免寻优过程陷入局部极值;提出自适应位置更新机制,提高算法优化精度。最后采用不同规模的标准实例对改进算法进行测试,与已有算法进行对比,实验结果验证了改进蝙蝠算法求解FFSP问题的有效性。
英文摘要In order to solve the flexible flow shop scheduling problem, this paper proposed the SEBA(self-adaptive elite bat algorithm) . The existing BA cannot solve the discrete problem because it is easily trapped in local extremum and has low accuracy of the optimization results. SEBA adopt the ROV(ranked order value) coding method, which made the algorithm suitable for solving discrete FFSP problems; This paper designed the set of the elite individuals based on hamming distance, which have higher fitness and lower similarities. It can also take turns to lead the population evolution, enhance the vitality of population evolution and avoid optimization process trap in local extremum. This paper designed an adaptive position update method to improve the accuracy of algorithm. Finally, It measured the SEBA by the dates from different scale scheduling benchmark problems with comparison of several algorithms. Simulation results show that SEBA is efficient for solving FFSP.
语种中文
源URL[http://ir.sia.cn/handle/173321/18848]  
专题沈阳自动化研究所_数字工厂研究室
推荐引用方式
GB/T 7714
韩忠华,朱伯秋,史海波,等. 基于改进蝙蝠算法的柔性流水车间排产优化问题研究[J]. 计算机应用研究,2017,34(7).
APA 韩忠华,朱伯秋,史海波,&林硕.(2017).基于改进蝙蝠算法的柔性流水车间排产优化问题研究.计算机应用研究,34(7).
MLA 韩忠华,et al."基于改进蝙蝠算法的柔性流水车间排产优化问题研究".计算机应用研究 34.7(2017).

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。