A dynamic co-evolution compact genetic algorithm for E/T problem
文献类型:会议论文
作者 | Han ZH(韩忠华); Zhu YX(朱一行); Lin S(林硕)![]() |
出版日期 | 2015 |
会议名称 | 17th IFAC Symposium on System Identification, SYSID 2015 |
会议日期 | October 19-21, 2015 |
会议地点 | Beijing, China |
关键词 | probabilistic models dynamic co-evolution compact genetic algorithm flexible flow shop earliness tardiness (E/T) |
页码 | 1439-1443 |
中文摘要 | In this paper, a dynamic co-evolution compact genetic algorithm (DCCGA) is proposed for flexible flow shop scheduling problem (FFSP) to minimize the total earliness and tardiness (E/T) penalties. In this new algorithm, a dynamic co-evolution mechanism containing two probabilistic models and a best individual inheritance strategy are integrated into the compact genetic algorithm (CGA). For improving the stability of the evolutionary trend in the evolution processes, the diversity of evolution trend and the convergence speed. Lastly, the experimental results show that, DCCGA outperforms CGA by 11.74% on the problem we study. |
收录类别 | EI |
产权排序 | 1 |
会议录 | 17th IFAC Symposium on System Identification, SYSID 2015
![]() |
会议录出版者 | IFAC |
会议录出版地 | Laxenburg, AUSTRIA |
语种 | 英语 |
源URL | [http://ir.sia.cn/handle/173321/19248] ![]() |
专题 | 沈阳自动化研究所_数字工厂研究室 |
推荐引用方式 GB/T 7714 | Han ZH,Zhu YX,Lin S. A dynamic co-evolution compact genetic algorithm for E/T problem[C]. 见:17th IFAC Symposium on System Identification, SYSID 2015. Beijing, China. October 19-21, 2015. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。