Target tracking using high-dimension data clustering
文献类型:期刊论文
作者 | Shao CY(邵春艳)![]() ![]() |
刊名 | 红外与激光工程
![]() |
出版日期 | 2016 |
卷号 | 45期号:4页码:1-10 |
关键词 | high dimension data clustering affine deformed object target tracking rigid body |
ISSN号 | 1007-2276 |
其他题名 | 采用高维数据聚类的目标跟踪 |
产权排序 | 1 |
通讯作者 | 邵春艳 |
中文摘要 | Inspired by the fact that a rigid body has consistent transformation for its individual part, a novel target tracking algorithm based on high-dimension data clustering is proposed. The proposed measure is proved to be available in object tracking mathematically. Thus, it is called the High- Dimension Data Clustering (HDDC) tracker. The frameworks of proposed method are as follows. First, Harris detector is utilized to extract the corners both in the template and the tracking region. Second, these feature points are grouped via their position information separately. Third, affine matrixes between the template and the tracking region are calculated among their respective feature groups. At last, high-dimension data clustering is carried out to measure these matrixes, and the feature points corresponding with the similar matrixes that are tracked targets. Extensive experimental results demonstrate that HDDC is efficient on measuring affine deformed objects and outperforms some state-of-the-art discriminative tracking methods. |
收录类别 | EI ; CSCD |
语种 | 英语 |
源URL | [http://ir.sia.cn/handle/173321/18675] ![]() |
专题 | 沈阳自动化研究所_光电信息技术研究室 |
推荐引用方式 GB/T 7714 | Shao CY,Ding QH,Luo HB,et al. Target tracking using high-dimension data clustering[J]. 红外与激光工程,2016,45(4):1-10. |
APA | Shao CY,Ding QH,Luo HB,&Li YL.(2016).Target tracking using high-dimension data clustering.红外与激光工程,45(4),1-10. |
MLA | Shao CY,et al."Target tracking using high-dimension data clustering".红外与激光工程 45.4(2016):1-10. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。