中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Target tracking using high-dimension data clustering

文献类型:期刊论文

作者Shao CY(邵春艳); Ding QH(丁庆海); Luo HB(罗海波); Li YL(李玉莲)
刊名红外与激光工程
出版日期2016
卷号45期号:4页码:1-10
关键词high dimension data clustering affine deformed object target tracking rigid body
ISSN号1007-2276
其他题名采用高维数据聚类的目标跟踪
产权排序1
通讯作者邵春艳
中文摘要Inspired by the fact that a rigid body has consistent transformation for its individual part, a novel target tracking algorithm based on high-dimension data clustering is proposed. The proposed measure is proved to be available in object tracking mathematically. Thus, it is called the High- Dimension Data Clustering (HDDC) tracker. The frameworks of proposed method are as follows. First, Harris detector is utilized to extract the corners both in the template and the tracking region. Second, these feature points are grouped via their position information separately. Third, affine matrixes between the template and the tracking region are calculated among their respective feature groups. At last, high-dimension data clustering is carried out to measure these matrixes, and the feature points corresponding with the similar matrixes that are tracked targets. Extensive experimental results demonstrate that HDDC is efficient on measuring affine deformed objects and outperforms some state-of-the-art discriminative tracking methods. 
收录类别EI ; CSCD
语种英语
源URL[http://ir.sia.cn/handle/173321/18675]  
专题沈阳自动化研究所_光电信息技术研究室
推荐引用方式
GB/T 7714
Shao CY,Ding QH,Luo HB,et al. Target tracking using high-dimension data clustering[J]. 红外与激光工程,2016,45(4):1-10.
APA Shao CY,Ding QH,Luo HB,&Li YL.(2016).Target tracking using high-dimension data clustering.红外与激光工程,45(4),1-10.
MLA Shao CY,et al."Target tracking using high-dimension data clustering".红外与激光工程 45.4(2016):1-10.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。