中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Recent Advances on Application of Deep Learning for Recovering Object Pose

文献类型:会议论文

作者Li, Wanyi1; Luo, Yongkang1; Wang, Peng1; Qin, Zhengke1; Zhou, Hai2; Qiao, Hong3
出版日期2016-12
会议日期Dec. 3 – Dec. 7, 2016
会议地点Qingdao, China
关键词Pose Estimation Deep Learning Survey
英文摘要Recovering object pose is of great importance to many higher level tasks such as robotic manipulation, scene understanding and augmented reality to name a few. Following the recent major breakthroughs in many computer vision tasks made by the deep learning, intensive research to experiment with it also in the task of recovering object pose is conducting. This paper aims to review the state-of-the-art progress on deep learning based pose estimation methods. Firstly, we introduce some popular datasets together with their relevant attributes. Secondly, the deep learning based pose estimation methods are summarized and categorized, and detailed descriptions of representative methods are provided, and their pros and cons are examined. Thirdly, evaluation protocol and comparable performance of reviewed approaches are given. Finally, we highlight the advantages of deep learning based pose estimation methods and provide insights for future.
会议录IEEE International Conference on Robotics and Biomimetics
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/12113]  
专题智能机器人系统研究
通讯作者Li, Wanyi
作者单位1.Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences
2.Research Center of Laser Fusion, China Academy of Engineering Physics
3.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Li, Wanyi,Luo, Yongkang,Wang, Peng,et al. Recent Advances on Application of Deep Learning for Recovering Object Pose[C]. 见:. Qingdao, China. Dec. 3 – Dec. 7, 2016.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。