中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
12,000-fps Multi-object Detection Using HOG Descriptor and SVM Classifier

文献类型:会议论文

作者Li Jianquan1,2; Yin Yingjie1,2; Liu Xilong1,2; Xu De1,2; Gu Qingyi1,2
出版日期2017-09
会议日期September 24–28, 201
会议地点Vancouver, BC, Canada
英文摘要Abstract— This paper describes a high-frame-rate (HFR) vision system that can detect multiple objects in an image of 512×512 pixels at 12,000 frames per seconds (fps). An optimized algorithm is proposed based on conventional Histograms of Oriented Gradient  (HOG) descriptor and Support Vector Machine (SVM) classifier algorithms for hardware implementation. By implementing the proposed algorithm on a field-programmable gate array (FPGA) of a high-speed vision platform, multiobject in an image can be detected at 12,000 fps under complex background. In hardware implementation, 64 pixels were processed in parallel with 80 MHz camera clock. Source image and detection results can be transferred to personal computer (PC) in real-time for recording or post-processing. Our developed HFR multi-object detection system was verified by performing several evaluations.
源URL[http://ir.ia.ac.cn/handle/173211/20064]  
专题精密感知与控制研究中心_精密感知与控制
中国科学院自动化研究所
作者单位1.CASIA
2.UCAS
推荐引用方式
GB/T 7714
Li Jianquan,Yin Yingjie,Liu Xilong,et al. 12,000-fps Multi-object Detection Using HOG Descriptor and SVM Classifier[C]. 见:. Vancouver, BC, Canada. September 24–28, 201.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。