中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Ordinal regression based on learning vector quantization

文献类型:期刊论文

作者Tang FZ(唐凤珍); Tio, Peter
刊名Neural Networks
出版日期2017
卷号93页码:76-88
关键词Ordinal regression Learning vector quantization Generalized matrix learning vector quantization
ISSN号0893-6080
产权排序1
通讯作者Tang FZ(唐凤珍)
中文摘要Recently, ordinal regression, which predicts categories of ordinal scale, has received considerable attention. In this paper, we propose a new approach to solve ordinal regression problems within the learning vector quantization framework. It extends the previous approach termed ordinal generalized matrix learning vector quantization with a more suitable and natural cost function, leading to more intuitive parameter update rules. Moreover, in our approach the bandwidth of the prototype weights is automatically adapted. Empirical investigation on a number of datasets reveals that overall the proposed approach tends to have superior out-of-sample performance, when compared to alternative ordinal regression methods.
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
类目[WOS]Computer Science, Artificial Intelligence ; Neurosciences
研究领域[WOS]Computer Science ; Neurosciences & Neurology
关键词[WOS]CLASSIFICATION
收录类别SCI ; EI
语种英语
WOS记录号WOS:000406784500007
源URL[http://ir.sia.cn/handle/173321/20497]  
专题沈阳自动化研究所_机器人学研究室
作者单位1.School of Computer Science, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
2.Shenyang Institute of Automation, Chinese Academy of Sciences, No.114, Nanta Street, Shenyang, Liaoning Province, 110016, China
推荐引用方式
GB/T 7714
Tang FZ,Tio, Peter. Ordinal regression based on learning vector quantization[J]. Neural Networks,2017,93:76-88.
APA Tang FZ,&Tio, Peter.(2017).Ordinal regression based on learning vector quantization.Neural Networks,93,76-88.
MLA Tang FZ,et al."Ordinal regression based on learning vector quantization".Neural Networks 93(2017):76-88.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。