中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
面向便携式AUV的水下主动捕捉式对接平台总体设计与实验研究

文献类型:学位论文

作者张医博
学位类别硕士
答辩日期2017-05-24
授予单位中国科学院沈阳自动化研究所
授予地点沈阳
导师唐元贵
关键词便携式AUV 水下对接 机械手主动捕捉 优化设计
其他题名General Design and Experiment of Underwater Active-Capture Docking Platform for Portable AUV
学位专业机械电子工程
中文摘要本文结合当前我国海洋观测的科学需求,围绕海底观测网和深海空间站的技术发展和建设,以提升AUV水下对接成功率,降低对接过程中因碰撞等因素可能带来的设备损坏风险为目标,提出一种利用机械手主动捕捉式水下对接技术的解决方案,并通过理论分析与计算,针对与之相关的若干项关键技术进行了研究,最后利用实验室条件搭建了基于水池环境的水下对接测试系统,对导向罩式对接和机械手主动捕捉式辅助对接两种模式进行了试验,验证了本文所提出的技术方案和研究方法的有效性,为便携式AUV系统有效融入深海空间站、海底观测网等海洋基站系统提供了一种可靠、实用和先进的水下对接技术手段和思路。本论文主要研究内容如下: (1)论文首先以水下对接的基础平台,即导向罩式对接装置为研究对象,在分析并构建对接对象的模型基础上,对其水下对接过程进行分析,研究对接过程中的碰撞和对接效率问题,据此以碰撞力大小和对接时间为评判指标,开展导向罩式对接平台的结构优化设计,为本文研究的机械手主动捕捉式水下对接提供理论依据和基础平台条件。 (2)面向水下对接的机械手运动学分析与优化设计。受当前AUV导航定位精度、可操纵性以及海流的影响,AUV单次对接成功率通常并不高。针对该问题,本研究借鉴空间站机械手辅助对接的方法,提出利用机械手主动捕捉AUV实现水下对接的方案,以水下对接系统对机械手的要求为出发点,在对机械手操作空间分析的基础上,本着机械手轻量化设计的原则,以杆长和关节角范围为设计变量,工作空间最大化为目标,进行机械手的优化设计。最后以可操作度作为运动灵活性评价指标,分析其在整个工作空间内的最佳作业范围,并将其安装在对接平台上合理的位置以发挥其最佳工作能力。 (3)开展基于机械手轨迹规划的主动捕捉式水下对接方法和策略研究。对于机械手主动捕捉式水下对接,在对接系统可以检测到AUV运动信息的前提下,针对AUV超出导向罩对接范围的情况,当AUV进入机械手工作空间时,机械手主动捕捉该AUV,并逐步将其放入导向罩对接范围,使之可以实现对接。整个过程中,机械手末端的运动可看做从起始点经过中间点运动到终止点的过程,然后用轨迹规划来实现。最终使AUV到达导向罩对接范围的一个理想的位姿,从而顺利完成对接。 (4)针对上述研究方案和方法,开展基于虚拟样机和水池试验平台的综合实验研究。首先,使用ADAMS软件对导向罩式水下对接和机械手主动捕捉式水下对接分别进行仿真,结果显示机械手主动捕捉式可以提高对接成功率,使超出导向罩对接范围的部分AUV成功实现对接。然后,利用已有的设备搭建一套简易的水池对接系统,分别开展导向罩式和机械手主动捕捉式对接,经过实际实验可知,机械手的加入提高了对接成功率,说明了机械手主动捕捉式对接方案和方法的有效性。
英文摘要Underwater docking technology acts a pivotal part in the development of submarine observation network and construction of deep sea space station.This thesis addresses an effective method for underwater docking with the assist of manipulator. It aims to improve the success rate of AUV underwater docking and reduce the risk of equipment damage caused by collision and other factors in the process of docking. On the basis of the theoretical analysis and calculation, a number of relative technologies are studied. Finally, we built an underwater docking system based on pool environment and conducted two kinds of experiment. The results verify the validity of the technical scheme and the research method proposed in this thesis. The method provide a reliable, practical and advanced underwater docking technology and ideas. Thus, AUVs will have a compact link with the deep sea space station, submarine observation network and so on. The main contents of this thesis are as follows: (1)This part takes the cone docking system for research object. On the basis of the model of docking objects, we analyze the underwater docking process and study the collision forces and the docking time in the docking process. Taking the magnitude of collision force and docking time as evaluation index, we optimize the structure of cone docking platform. The cone docking system provides a theoretical basis and a basic platform for the study of the active capture underwater docking system with manipulator. (2)Kinematics analysis and optimzied design of manipulator for underwater docking. Due to the impact of AUV navigation positioning accuracy, maneuverability and ocean currents, the success rate of docking is low. In order to solve this problem, we propose an active capture underwater docking method with the assist of manipulator, which is referred to the space station manipulator assisted docking. Based on the docking requirements and the manipulator's workspace, we make the lightweight as a principle and take the link length and the joint angle as the design variable and make the working space to maximum as the objective function, then we start the optimized design. Finally, we computer the manipulability in the whole workspace and analyze its best operating range throughout the workspace. We install the manipulator to a reasonable position of the docking platform to exert its best working ability. (3) Research on active capture underwater docking method and strategy which is based on manipulator trajectory planning. On condition that the motion information about the AUV can be detected by the docking system, we study the actively captures type underwater docking. When AUV is not entering the cone, the manipulator will catch the AUV in its workspace. Then it will put AUV in the range of docking area in order that AUV can successful docking with the platform. In the process, the movement of the end effector of the manipulator can be seen as the process of moving from the starting point to the end point. In this way, we can use the trajectory planning to finish the task. Eventually the AUV can be placed in an ideal posture in the docking area and it will successfully completing the docking. (4) In order to verify the above researches and methods is effective or not, we carry out two kinds of experiments, one is based on virtual prototype and another is a pool test. Firstly, the ADAMS software is used to simulate the process of underwater docking with cone and the process of underwater docking with manipulator in active capture way respectively. The results show that the active capture type of docking can improve the success rate and make the AUV which is out of the docking area having a successful docking. Then, we use the exist equipment to build a simple pool docking system. Two kind of docking are carried out. After the practical experiments, we can see that the manipulator can improve the docking success rate. This verifies the effectiveness of the active capture docking scheme.
语种中文
产权排序1
源URL[http://ir.sia.cn/handle/173321/20521]  
专题沈阳自动化研究所_水下机器人研究室
推荐引用方式
GB/T 7714
张医博. 面向便携式AUV的水下主动捕捉式对接平台总体设计与实验研究[D]. 沈阳. 中国科学院沈阳自动化研究所. 2017.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。