中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
弱纹理环境双目视觉稠密视差鲁棒估计方法

文献类型:期刊论文

作者刘成; 杜英魁; 原忠虎; 韩晓微; 田丹
刊名光学精密工程
出版日期2017
卷号25期号:4页码:554-562
关键词弱纹理环境 双目视觉 视差估计 置信度传播 参数空间投票
ISSN号1004-924X
其他题名Robust estimation method for dense disparity of binocular vision under textureless environment
产权排序2
通讯作者杜英魁
中文摘要精确稠密视差估计是立体视觉系统恢复观测场景三维信息的关键。从立体视觉在机器人环境感知的实际应用角度出发,提出了对于弱纹理、阴影和遮挡等关键影响因素,具有良好鲁棒性、精度和处理速度的稠密视差图估计算法。针对弱纹理、阴影和深度不连续的问题,设计了基于灰度相似度概率的置信度传播算法,结合视差平滑约束,以期实现较高精度的视差初值快速估计。由视差级数定义的消息向量通过异向平行迭代进行传播,消息向量包含表征像素点灰度相似性和平滑性的能量信息,通过全局能量函数的迭代收敛,快速获得视差初始估计。根据独立连通区域通常具有相似纹理特征和视差一致性的先验知识,提出了基于Mean-Shift聚类分割算法和参数空间投票...
英文摘要Precise dense disparity estimation is the key for stereo visual system to recover three-dimensional information of observation scene. From practical application perspective of stereo vision in robot environment perception, a dense disparity figure estimation algorithm having good robustness, accuracy and processing speed to key influence factors (texturelessness, shadow and blocking etc.) was proposed. Aimed at texturelessness, shadow and uncontinuous, belief propagation algorithm based on gray-scale similarity probability had been designed to realize rapid and accurate estimation of initial value of disparity by combining with disparity smoothness constraint. The message vector defined by disparity class was propagated through anisotropic diffusion and parallel iteration. Message vector included energy information representing gray-scale similarity and smoothness of pixel point. Initial estimation of disparity could be gained rapidly through iteration convergence of global energy function. According to the priori knowledge that independent connected area generally had similar textural features and disparity conformance, parameter space voting self-adaption disparity approximation surface estimation algorithm on the basis of Mean-Shift clustering partitioning algorithm was proposed to perform fine optimization estimation of dense disparity. 5 groups of standard test image having different textureless features, 4 groups of actual image under indoor environment, 4 groups of actual image under outdoor environment and 4 groups of actual environment image under special lighting environment through selenographic simulation were utilized to perform test experiment and experimental result shows that the proposed algorithm has good robustness and effectiveness. © 2017, Science Press.
收录类别EI ; CSCD
语种中文
CSCD记录号CSCD:5975770
源URL[http://ir.sia.cn/handle/173321/20775]  
专题沈阳自动化研究所_机器人学研究室
作者单位1.中国科学院沈阳自动化研究所机器人学国家重点实验室
2.沈阳大学信息工程学院
推荐引用方式
GB/T 7714
刘成,杜英魁,原忠虎,等. 弱纹理环境双目视觉稠密视差鲁棒估计方法[J]. 光学精密工程,2017,25(4):554-562.
APA 刘成,杜英魁,原忠虎,韩晓微,&田丹.(2017).弱纹理环境双目视觉稠密视差鲁棒估计方法.光学精密工程,25(4),554-562.
MLA 刘成,et al."弱纹理环境双目视觉稠密视差鲁棒估计方法".光学精密工程 25.4(2017):554-562.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。