时空特征融合深度学习网络人体行为识别方法
文献类型:期刊论文
作者 | 范慧杰![]() ![]() |
刊名 | 红外与激光工程
![]() |
出版日期 | 2018 |
卷号 | 47期号:2页码:55-60 |
关键词 | 时空特征 融合 骨架 视角不变 |
ISSN号 | 1007-2276 |
其他题名 | Action recognition method of spatio-temporal feature fusion deep learning network |
产权排序 | 1 |
通讯作者 | 裴晓敏 |
中文摘要 | 基于自然场景图像的人体行为识别方法中遮挡、背景干扰、光照不均匀等因素影响识别结果,利用人体三维骨架序列的行为识别方法可以克服上述缺点。首先,考虑人体行为的时空特性,提出一种时空特征融合深度学习网络人体骨架行为识别方法;其次,根据骨架几何特征建立视角不变性特征表示,CNN(Convolutional Neural Network)网络学习骨架的局部空域特征,作用于空域的LSTM(Long Short Term Memory)网络学习骨架空域节点之间的相关性特征,作用于时域的LSTM网络学习骨架序列时空关联性特征;最后,利用NTU RGB+D数据库验证文中算法。实验结果表明:算法识别精度有所提高,对于多视角骨架具有较强的鲁棒性。 |
英文摘要 | Action recognition from natural scene was affected by complex illumination conditions and cluttered backgrounds. There was a growing interest in solving these problems by using 3D skeleton data. Firstly, considering the spatio-temporal features of human actions, a spatio-temporal fusion deep learning network for action recognition was proposed; Secondly, view angle invariant character was constructed based on geometric features of the skeletons. Local spatial character was extracted by short -time CNN networks. A spatio-LSTM network was used to learn the relation between joints of a skeleton frame. Temporal LSTM was used to learn spatio-temporal relation between skeleton sequences. Lastly, NTU RGB+D datasets were used to evaluate this network, the network proposed achieved the state-of-the-art performance for 3D human action analysis. Experimental results show that this network has strong robustness for view invariant sequences. |
收录类别 | EI ; CSCD |
语种 | 中文 |
CSCD记录号 | CSCD:6207499 |
源URL | [http://ir.sia.cn/handle/173321/21585] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
作者单位 | 1.辽宁石油化工大学信息与控制工程学院 2.中国科学院沈阳自动化研究所机器人学国家重点实验室 |
推荐引用方式 GB/T 7714 | 范慧杰,唐延东,裴晓敏. 时空特征融合深度学习网络人体行为识别方法[J]. 红外与激光工程,2018,47(2):55-60. |
APA | 范慧杰,唐延东,&裴晓敏.(2018).时空特征融合深度学习网络人体行为识别方法.红外与激光工程,47(2),55-60. |
MLA | 范慧杰,et al."时空特征融合深度学习网络人体行为识别方法".红外与激光工程 47.2(2018):55-60. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。