中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
轮桨腿一体化两栖机器人控制系统研究与设计

文献类型:学位论文

作者宋吉来
学位类别硕士
答辩日期2008-06-04
授予单位中国科学院沈阳自动化研究所
授予地点沈阳
导师李智刚
关键词轮桨腿一体化两栖机器人 开放式控制系统 CAN μC/OS-II ARM
其他题名Research and Design of Control System of Wheel-Paddle-Leg Integration Amphibious Robot
学位专业模式识别与智能系统
中文摘要轮桨腿一体化两栖机器人是一种既可以在陆地、滩涂、海底爬行,又可以在极浅水海域浮游的特种机器人。其研究与开发,对海洋环境调查、滩涂沼泽研究取样、军事两栖探雷与灭雷以及水下传感网络等都具有重要意义。这种新型两栖机器人作业环境复杂、运动模式多样,其运行机理、控制策略和建模方法等关键技术与传统的陆地或水下机器人有所不同。轮桨腿一体化两栖机器人控制系统的研究与设计,对轮桨腿一体化两栖机器人样机的实现及各项关键技术的进一步研究具有重要意义。 本文以轮桨腿一体化两栖机器人样机功能实现为目的,针对机器人载体具有的模块化、可重构和可扩展等特性,采用开放式设计思想,对控制系统软、硬件进行开放式设计。硬件上,采用基于CAN总线的分布式控制系统,便于实现功能节点的扩展,并且采用片内集成CAN控制器的ARM处理器,便于实现与CAN总线接口且具有较低的功耗。软件上,控制软件建立在μC/OS-II嵌入式实时操作系统之上,采用分层和模块化结构,以实现软件系统的开放性。同时,针对机器人载体空间狭小、难以布置下外购电机驱动器的特点,自行设计了体积较小且驱动能力较强的专用电机驱动电路。 第1章简要介绍研究的目的和意义后,分别对两栖机器人和机器人控制系统的国内外研究现状进行了综述。第2章介绍了轮桨腿一体化两栖机器人的系统组成,包括外形结构、硬件系统结构和软件系统结构,并结合两栖机器人自身特点,介绍了其运动控制方式。第3章对轮桨腿一体化两栖机器人的硬件系统进行了研究和设计,包括节点处理器选择、主控制节点设计、CAN数据总线接口电路设计、电机驱动节点设计、故障诊断及传感器节点设计、系统电源管理方案设计六个部分。第4章针对轮桨腿一体化两栖机器人的特殊需求,制定了CAN总线应用层协议,并采用嵌入式实时操作系统进行了通信软件和电机驱动软件的设计。第5章设计了控制系统在系统编程(ISP)方案。第6章对所设计的控制系统进行了实验验证。 实验平台的测试表明,本文设计的控制系统能够可靠、稳定工作;控制系统和控制方法的设计与实现是正确并且有效的。控制系统软硬件的设计对轮桨腿一体化两栖机器人样机的实现和各项关键技术的研究奠定了良好的基础。
索取号TP242/S86/2008
英文摘要Wheel-Paddle-Leg Integration Amphibious Robot is a special robot. It can crawl in the environment of land, tidelands and seabed, and can also float in the environment of extremely shallow water of sea area. The research and development of Wheel-Paddle-Leg Integration Amphibious Robot has the important meaning of marine environment investigation, shallow seas and tidelands bog research sample, military mine detection, and under water sensor network. This kind of new amphibious robot works in complex environment, and its movement pattern diverse. Its movement mechanism, control policy, modelling method, navigation plan, and other key technologies is different from the traditional land and underwater robots. The software and hardware of control system design of Wheel-Paddle-Leg Integration Amphibious Robot has the important meaning of prototype realization and each key technologies further research. This article takes goal of prototype function realization of Wheel-Paddle-Leg Integration Amphibious Robot. For the robot vector having the characteristics of modularity, restructurable and expandable, the paper uses the open design concept to carry on the open design to control system software and hardware. On the hardware, using CAN bus distributional control system is advantageous to realize the function node expansion, and using internal integrated CAN controller's ARM processor, is advantageous to realize interfacing with the CAN bus, and has the low power loss. On the software, the control software establishment above μC/OS-II embedded real-time operating system, using the lamination and the modular structure, it is easy to realize software system's openness. At the same time, the robot carrier is too narrow and small to fit the purchase motor driver, so we designed the smaller and driving force stronger motor-driven electric circuit. The 1st chapter after brief introduction of research goal and significance, separately has carried on the introduction of the amphibious robot and the robot control system's domestic and foreign research present situation. The 2nd chapter introduces the composition of Wheel-Paddle-Leg Integration Amphibious Robot, include contour structure, hardware gross structure and software gross structure. It also introduces the motion control way of the robot. The 3rd chapter gives a detailed hardware design of Wheel-Paddle-Leg Integration Amphibious Robot, including node processor choice, master control node design, CAN field bus interface circuit design, motor-driven node design, failure diagnosis node design and system power source management project design. The 4th chapter formulates the CAN field bus application layer agreement in the view of the special demand of Wheel-Paddle-Leg Integration Amphibious Robot, and design the communication software and motor-driven software used the embedded real-time operating system. The 5th chapter designed the in system program (ISP) plan of control system. The 6th chapter uses platform tests to verify the control system. Platform tests indicate that the control system designed in the article can work reliable and the stable. The design and realization of control system and control method is correct and effective. Control system hardware and software design has built a good foundation for prototype's realization of Wheel-Paddle-Leg Integration Amphibious Robot and further research on each key technologies.
语种中文
公开日期2010-11-29
产权排序1
页码74
分类号TP242
源URL[http://210.72.131.170//handle/173321/451]  
专题沈阳自动化研究所_水下机器人研究室
推荐引用方式
GB/T 7714
宋吉来. 轮桨腿一体化两栖机器人控制系统研究与设计[D]. 沈阳. 中国科学院沈阳自动化研究所. 2008.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。