中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Structure guided GANs

文献类型:会议论文

作者Zhao HC(赵怀慈); Liu PF(刘鹏飞); Cao FD(曹飞道)
出版日期2017
会议名称LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017
会议日期July 23-25, 2017
会议地点Changchun, China
关键词GANs structure ambiguous structure similar
页码1-4
通讯作者Zhao HC(赵怀慈)
中文摘要Generative adversarial networks (GANs) has achieved success in many fields. However, there are some samples generated by many GAN-based works, whose structure is ambiguous. In this work, we propose Structure Guided GANs that introduce structural similar into GANs to overcome the problem. In order to achieve our goal, we introduce an encoder and a decoder into a generator to design a new generator and take real samples as part of the input of a generator. And we modify the loss function of the generator accordingly. By comparison with WGAN, experimental results show that our proposed method overcomes largely sample structure ambiguous and can generate higher quality samples.
收录类别EI ; CPCI(ISTP)
产权排序1
会议主办者Chinese Society for Optical Engineering (CSOE)
会议录Proceedings SPIE 10605, LIDAR Imaging Detection and Target Recognition 2017
会议录出版者SPIE
会议录出版地Bellingham, USA
语种英语
ISSN号0277-786X
WOS记录号WOS:000426279000097
源URL[http://ir.sia.cn/handle/173321/21305]  
专题沈阳自动化研究所_光电信息技术研究室
作者单位1.The Key Lab of Image Understanding and Computer Vision, Liaoning Province, Shenyang 110016,P. R. China
2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016,P.R. China
3.Key Laboratory of Opto-Electronic Information Processing, CAS, Shenyang, Liaoning 110016, P. R. China
4.University of Chinese Academy of Sciences, Beijing 100049, P. R. China
推荐引用方式
GB/T 7714
Zhao HC,Liu PF,Cao FD. Structure guided GANs[C]. 见:LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017. Changchun, China. July 23-25, 2017.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。