中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-objective flexible job shop scheduling problem using differential evolution algorithm

文献类型:会议论文

作者Shi HB(史海波)3,4,5; Han ZH(韩忠华)1,3,4,5; Cao Y(曹阳)1,2,3,4,5; Wang, J.Y.; Wang, J.Y.; Qi F(祁峰); Zhang, Y.H.; Wang, J.Y.
出版日期2017
会议名称9th International Conference on Modelling, Identification and Control, ICMIC 2017
会议日期July 10-12, 2017
会议地点Kunming, China
关键词flexible job shop scheduling problem differential evolution algorithm multi-objective optimization
页码521-526
通讯作者Cao Y(曹阳)
中文摘要Flexible job shop scheduling problem (FJSP) is very complex to be controlled, and it is a problem which inherits job shop scheduling problem (JSP) characteristics. FJSP has two sub-problems: routing sub-problem and scheduling sub-problem. In this paper, improved differential evolution (DE) algorithm is presented for multi-objective FJSP. Minimization of three objective functions includes maximum completion time, workload of the most loaded machine and total workload of all machines. The improved algorithm has a well-designed mutation and crossover operator, and uses a Pareto non-dominated sorting method. Computational simulations and comparisons demonstrate the effectiveness of the proposed improved DE algorithm.
收录类别EI
产权排序1
会议录Proceedings of 2017 9th International Conference On Modelling, Identification and Control, ICMIC 2017
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-5090-6573-8
源URL[http://ir.sia.cn/handle/173321/22424]  
专题沈阳自动化研究所_光电信息技术研究室
作者单位1.Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.Department of Digital Factory, Shenyang Institute of Automation, CAS, Shenyang 110016, China
5.Key Laboratory of Networked Control, CAS, Shenyang 110016, China
推荐引用方式
GB/T 7714
Shi HB,Han ZH,Cao Y,et al. Multi-objective flexible job shop scheduling problem using differential evolution algorithm[C]. 见:9th International Conference on Modelling, Identification and Control, ICMIC 2017. Kunming, China. July 10-12, 2017.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。