Multi-objective flexible job shop scheduling problem using differential evolution algorithm
文献类型:会议论文
作者 | Shi HB(史海波)3,4,5; Han ZH(韩忠华)1,3,4,5; Cao Y(曹阳)1,2,3,4,5; Wang, J.Y.; Wang, J.Y.; Qi F(祁峰)![]() ![]() |
出版日期 | 2017 |
会议名称 | 9th International Conference on Modelling, Identification and Control, ICMIC 2017 |
会议日期 | July 10-12, 2017 |
会议地点 | Kunming, China |
关键词 | flexible job shop scheduling problem differential evolution algorithm multi-objective optimization |
页码 | 521-526 |
通讯作者 | Cao Y(曹阳) |
中文摘要 | Flexible job shop scheduling problem (FJSP) is very complex to be controlled, and it is a problem which inherits job shop scheduling problem (JSP) characteristics. FJSP has two sub-problems: routing sub-problem and scheduling sub-problem. In this paper, improved differential evolution (DE) algorithm is presented for multi-objective FJSP. Minimization of three objective functions includes maximum completion time, workload of the most loaded machine and total workload of all machines. The improved algorithm has a well-designed mutation and crossover operator, and uses a Pareto non-dominated sorting method. Computational simulations and comparisons demonstrate the effectiveness of the proposed improved DE algorithm. |
收录类别 | EI |
产权排序 | 1 |
会议录 | Proceedings of 2017 9th International Conference On Modelling, Identification and Control, ICMIC 2017
![]() |
会议录出版者 | IEEE |
会议录出版地 | New York |
语种 | 英语 |
ISBN号 | 978-1-5090-6573-8 |
源URL | [http://ir.sia.cn/handle/173321/22424] ![]() |
专题 | 沈阳自动化研究所_光电信息技术研究室 |
作者单位 | 1.Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China 2.College of Information Science and Engineering, Northeastern University, Shenyang 110819, China 3.University of Chinese Academy of Sciences, Beijing 100049, China 4.Department of Digital Factory, Shenyang Institute of Automation, CAS, Shenyang 110016, China 5.Key Laboratory of Networked Control, CAS, Shenyang 110016, China |
推荐引用方式 GB/T 7714 | Shi HB,Han ZH,Cao Y,et al. Multi-objective flexible job shop scheduling problem using differential evolution algorithm[C]. 见:9th International Conference on Modelling, Identification and Control, ICMIC 2017. Kunming, China. July 10-12, 2017. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。