中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways

文献类型:期刊论文

作者Huang, Yu1,2; Guo, Huichao3; Han, Fuman3; Rao, YongFang3,4; Ma, Jun4; Qi, Fei5; Li, Ruoyu5; Zhang, Yufei1,2
刊名CHEMICAL ENGINEERING JOURNAL
出版日期2018-11-15
卷号352页码:601-611
关键词Lafeo3 Peroxylmonosulfate (Pms) Diclofenac (Dcf) Dft Reaction Mechanisms Degradation Pathways
DOI10.1016/j.cej.2018.07.062
文献子类Article
英文摘要A perovskite oxide, LaFeO3 (LFO), was synthesized and evaluated as a heterogeneous catalyst to activate peroxymonosulfate (PMS) for the oxidative degradation of diclofenac (DCF), a non-steroidal anti-inflammatory drug. It was observed that the catalytic activity of LFO was much higher than that of Fe2O3. LFO catalyzed PMS to degrade DCF with a turnover frequency (2.02 x 10(-3) min(-1))which is 17-fold higher than that of Fe2O3. Both sulfate and hydroxyl radicals were identified during LFO-activated PMS process by electron spin resonance (ESR). Radical competitive reactions indicate sulfate radicals played a major role in DCF degradation by LFO/PMS process. The PMS decomposition can be attributed to the formation of an inner-sphere complexation between the Fe (III) sites on LFO surface and PMS. Theoretical calculations illustrated the strong interaction between PMS and Fe (III) and electron transfer from PMS to Fe (III). Hydrogen temperature-programmed reduction (H-2-TPR) indicates that the LFO perovskite oxide is capable of facilitating an easier reduction of Fe (III) to mediate a redox process. Oxygen temperature-programmed desorption (O-2-TPD) suggests much more oxygen vacancies exist in LFO than in Fe2O3. Oxygen vacancies are favorable for the formation of chemical bond between Fe (III) and PMS and the activation of PMS. In situ ATR-FTIR analysis of LFO surface during PMS decomposition implies Fe (III)-Fe(II)-Fe (III) redox cycle was believed to account for the generation of sulfate radical. The intermediates generated during DCF degradation were identified and the possible degradation pathways were advanced in LFO/PMS system.
WOS关键词ANTIINFLAMMATORY DRUG DICLOFENAC ; AQUEOUS-SOLUTION ; SULFATE RADICALS ; RATE CONSTANTS ; ADVANCED OXIDATION ; TREATMENT PLANTS ; NO REMOVAL ; PEROVSKITE ; CATALYSTS ; WATER
WOS研究方向Engineering
语种英语
WOS记录号WOS:000444001900065
源URL[http://ir.ieecas.cn/handle/361006/5344]  
专题地球环境研究所_粉尘与环境研究室
作者单位1.Chinese Acad Sci, Inst Earth Environm, SKLLQG, Xian 710075, Shaanxi, Peoples R China
2.Chinese Acad Sci, Inst Earth Environm, Key Lab Aerosol Chem & Phys, Xian 710075, Shaanxi, Peoples R China
3.Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Shaanxi, Peoples R China
4.Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
5.Beijing Forestry Univ, Coll Environm Sci & Engn, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Huang, Yu,Guo, Huichao,Han, Fuman,et al. Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways[J]. CHEMICAL ENGINEERING JOURNAL,2018,352:601-611.
APA Huang, Yu.,Guo, Huichao.,Han, Fuman.,Rao, YongFang.,Ma, Jun.,...&Zhang, Yufei.(2018).Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways.CHEMICAL ENGINEERING JOURNAL,352,601-611.
MLA Huang, Yu,et al."Heterogeneous activation of peroxymonosulfate by LaFeO3 for diclofenac degradation: DFT-assisted mechanistic study and degradation pathways".CHEMICAL ENGINEERING JOURNAL 352(2018):601-611.

入库方式: OAI收割

来源:地球环境研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。