中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau

文献类型:期刊论文

作者Deng, Tao1,2,3,4; Wang, Xiaoming1,5; Wu, Feixiang1,2; Wang, Yang6,7; Li, Qiang1,2,3; Wang, Shiqi1,2,3; Hou, Sukuan1,2
刊名GLOBAL AND PLANETARY CHANGE
出版日期2019-03-01
卷号174页码:58-69
关键词Tibetan Plateau Paleo-elevation Vertebrate fossil Fish Mammal Plant
ISSN号0921-8181
DOI10.1016/j.gloplacha.2019.01.005
通讯作者Deng, Tao(dengtao@ivpp.ac.cn)
英文摘要The uplift of the Tibetan Plateau is an important geological event, but there is considerable controversy about its growth history. Different geological observations contribute to this controversial issue, while data from geochemistry, tectonics, and paleontology further fuel the debate. Vertebrate fossils have provided significant evidence for documenting the uplift of the Tibetan Plateau in the geologic past. The earliest fossil evidence recently collected from the Oligocene Dingqing Formation in central Tibet includes the climbing perch and cyprinine fish fossils whose modern close relatives are distributed in the tropical zone of Asia and Africa. These discoveries not only are significant for the phylogeny and zoogeography of fishes, but also imply that the hinterland of the Tibetan Plateau was a warm and humid lowland at similar to 26 Ma. The co-existing plant assemblage, which includes palms and golden rain trees among others, indicates that the warm and humid airs from the Indian Ocean could flow deeply into central Tibet, consistent with the inference from the fish fossils. Since that time, the geographical features and natural environments within the Tibetan Plateau have greatly changed. The Tibetan Plateau was consistently uplifted in the Early Miocene and reached an elevation of similar to 3000 m, which was demonstrated by fish, mammal, and plant fossils. The endemic schizothoracines (snow carps) originated from the Miocene when the Tibetan Plateau turned into a barrier for mammalian migrations between north and south sides. A series of fish and mammal fossils provided unequivocal evidence that the Tibetan Plateau uplifted close to its modern elevation in the Pliocene and developed a cryospheric environment. As a result, the plateau region became the origination center for the cold-adapted Quaternary Ice Age fauna.
WOS关键词KUNLUN PASS BASIN ; LUNPOLA BASIN ; SOUTHERN TIBET ; ASIAN MONSOON ; EARLY MIOCENE ; STABLE-ISOTOPES ; NORTHERN TIBET ; PALEOALTIMETRY ; UPLIFT ; PALEOELEVATION
资助项目Chinese Academy of Science[XDA20070203] ; Chinese Academy of Science[XDB26000000] ; Chinese Academy of Science[QYZDY-SSW-DQCO22] ; Chinese Academy of Science[GJHZ1885] ; National Natural Science Foundation of China[41430102]
WOS研究方向Physical Geography ; Geology
语种英语
WOS记录号WOS:000461411900006
出版者ELSEVIER SCIENCE BV
资助机构Chinese Academy of Science ; National Natural Science Foundation of China
源URL[http://119.78.100.205/handle/311034/9463]  
专题中国科学院古脊椎动物与古人类研究所
通讯作者Deng, Tao
作者单位1.Chinese Acad Sci, Inst Vertebrate Paleontol & Paleoanthropol, Key Lab Vertebrate Evolut & Human Origins, Beijing 100044, Peoples R China
2.CAS Ctr Excellence Life & Paleoenvironm, Beijing 100044, Peoples R China
3.CAS Ctr Excellence Tibetan Plateau Earth Sci, Beijing 100101, Peoples R China
4.Univ Chinese Acad Sci, Sch Earth Sci, Beijing 100039, Peoples R China
5.Nat Hist Museum Los Angeles Cty, Los Angeles, CA 90007 USA
6.Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA
7.Jinan Univ, Inst Groundwater & Earth Sci, Guangzhou 510632, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Deng, Tao,Wang, Xiaoming,Wu, Feixiang,et al. Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. GLOBAL AND PLANETARY CHANGE,2019,174:58-69.
APA Deng, Tao.,Wang, Xiaoming.,Wu, Feixiang.,Wang, Yang.,Li, Qiang.,...&Hou, Sukuan.(2019).Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau.GLOBAL AND PLANETARY CHANGE,174,58-69.
MLA Deng, Tao,et al."Review: Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau".GLOBAL AND PLANETARY CHANGE 174(2019):58-69.

入库方式: OAI收割

来源:古脊椎动物与古人类研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。