中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Decision Controller for Object Tracking With Deep Reinforcement Learning

文献类型:期刊论文

作者Zhong, Zhao1,2; Yang, Zichen3; Feng, Weitao3; Wu, Wei3; Hu, Yangyang3; Liu, Cheng-Lin1,4
刊名IEEE ACCESS
出版日期2019
卷号7页码:28069-28079
关键词Computer vision deep learning object tracking reinforcement learning
ISSN号2169-3536
DOI10.1109/ACCESS.2019.2900476
通讯作者Liu, Cheng-Lin(liucl@nlpr.ia.ac.cn)
英文摘要There are many decisions which are usually made heuristically both in single object tracking (SOT) and multiple object tracking (MOT). Existing methods focus on tackling decision-making problems on special tasks in tracking without a unified framework. In this paper, we propose a decision controller (DC) which is generally applicable to both SOT and MOT tasks. The controller learns an optimal decision-making policy with a deep reinforcement learning algorithm that maximizes long term tracking performance without supervision. To prove the generalization ability of DC, we apply it to the challenging ensemble problem in SOT and tracker-detector switching problem in MOT. In the tracker ensemble experiment, our ensemble-based tracker can achieve leading performance in VOT2016 challenge and the light version can also get a state-of-the-art result at 50 FPS. In the MOT experiment, we utilize the tracker-detector switching controller to enable real-time online tracking with competitive performance and 10x speed up.
资助项目National Natural Science Foundation of China (NSFC)[61721004] ; National Natural Science Foundation of China (NSFC)[61633021]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000461870200001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China (NSFC)
源URL[http://ir.ia.ac.cn/handle/173211/23561]  
专题自动化研究所_模式识别国家重点实验室_模式分析与学习团队
通讯作者Liu, Cheng-Lin
作者单位1.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Sensetime Res Inst, Beijing 100084, Peoples R China
4.Univ Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhong, Zhao,Yang, Zichen,Feng, Weitao,et al. Decision Controller for Object Tracking With Deep Reinforcement Learning[J]. IEEE ACCESS,2019,7:28069-28079.
APA Zhong, Zhao,Yang, Zichen,Feng, Weitao,Wu, Wei,Hu, Yangyang,&Liu, Cheng-Lin.(2019).Decision Controller for Object Tracking With Deep Reinforcement Learning.IEEE ACCESS,7,28069-28079.
MLA Zhong, Zhao,et al."Decision Controller for Object Tracking With Deep Reinforcement Learning".IEEE ACCESS 7(2019):28069-28079.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。