Sparse recovery: From vectors to tensors
文献类型:期刊论文
作者 | Yuan, Ming1; Meng DY(孟德宇)3,4; Wang Y(王尧)2,3 |
刊名 | National Science Review
![]() |
出版日期 | 2018 |
卷号 | 5期号:5页码:756-767 |
关键词 | High-dimensional Data Sparsity Compressive Sensing Low-rank Matrix Recovery Tensors |
ISSN号 | 2095-5138 |
产权排序 | 1 |
英文摘要 | Recent advances in various fields such as telecommunications, biomedicine and economics, among others, have created enormous amount of data that are often characterized by their huge size and high dimensionality. It has become evident, from research in the past couple of decades, that sparsity is a flexible and powerful notion when dealing with these data, both from empirical and theoretical viewpoints. In this survey, we review some of the most popular techniques to exploit sparsity, for analyzing high-dimensional vectors, matrices and higher-order tensors. |
WOS关键词 | RESTRICTED ISOMETRY PROPERTY ; COHERENT TIGHT FRAMES ; SIGNAL RECOVERY ; UNCERTAINTY PRINCIPLES ; L-1/2 REGULARIZATION ; VARIABLE SELECTION ; RANK ; REPRESENTATION ; RECONSTRUCTION ; CONSTRUCTIONS |
资助项目 | National Natural Science Foundation of China[11501440] ; National Natural Science Foundation of China[61373114] ; National Natural Science Foundation of China[61273020] ; National Natural Science Foundation of China[61661166011] ; National Natural Science Foundation of China[61721002] ; National Basic Research Program of China (973 Program)[2013CB329404] ; National Science Foundation[DMS-1265202] |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
CSCD记录号 | CSCD:6384517 |
WOS记录号 | WOS:000448667000025 |
源URL | [http://ir.sia.cn/handle/173321/23424] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Yuan, Ming; Meng DY(孟德宇); Wang Y(王尧) |
作者单位 | 1.Department of Statistics, Columbia University, New York, NY 10027, United States 2.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 10016, China 3.School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China 4.Ministry of Education Key Lab of Intelligent Networks and Network Security, Xi'an Jiaotong University, Xi'an 710049, China |
推荐引用方式 GB/T 7714 | Yuan, Ming,Meng DY,Wang Y. Sparse recovery: From vectors to tensors[J]. National Science Review,2018,5(5):756-767. |
APA | Yuan, Ming,Meng DY,&Wang Y.(2018).Sparse recovery: From vectors to tensors.National Science Review,5(5),756-767. |
MLA | Yuan, Ming,et al."Sparse recovery: From vectors to tensors".National Science Review 5.5(2018):756-767. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。