中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Improved K-medoids clustering based on gray association rule

文献类型:会议论文

作者Gao SY(高诗莹)1,2,3; Li S(李帅)1,3,4; Zhou XF(周晓锋)1,3
出版日期2017
会议日期December 9-10, 2017
会议地点Shenzhen, China
关键词K-mcdoids Gray Incidcnce Clustering Algorithm Aluminum Electrolysis
页码349-356
英文摘要

This paper presents a new K-Medoids clustering algorithm based on gray relational degree. Analyze the gray incidence of each attribute and convert them into the weights of the attributes, and then apply these weights to the distance measure of the cluster; based on this measure, this paper proposed an improved clustering algorithm: Gray-K-Medoids clustering algorithm and applied it to the analysis of the aluminum electrolysis data. The paper introduces the gray relational degree and the basic principle based on the gray relational degree clustering and introduced the improved algorithm in detail. In order to test the effect of improving the algorithm, it was used to the production data of an aluminum plant, and the results show the effectiveness of the algorithm, has a certain promotional value.

产权排序1
会议录Advances in Intelligent Systems and Computing, Recent Developments in Intelligent Computing, Communication and Devices - Proceedings of ICCD 2017
会议录出版者Springer Verlag
会议录出版地Berlin
语种英语
ISSN号2194-5357
ISBN号978-981-10-8943-5
源URL[http://ir.sia.cn/handle/173321/22732]  
专题沈阳自动化研究所_数字工厂研究室
通讯作者Gao SY(高诗莹)
作者单位1.Key Laboratory of Network Control System, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Computer Science and Engineering, Northeastern University, Shenyang 110000, China
3.Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
4.University of Chinese Academy of Sciences, Beijing 100049, China
推荐引用方式
GB/T 7714
Gao SY,Li S,Zhou XF. Improved K-medoids clustering based on gray association rule[C]. 见:. Shenzhen, China. December 9-10, 2017.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。