A Deep Face Recognition Method Based on Model Fine-tuning and Principal Component Analysis
文献类型:会议论文
作者 | Wang, HY(王宏玉)1,2; Xu F(徐方)1,2; Zhang YA(张延安)2,3![]() |
出版日期 | 2017 |
会议日期 | July 31 - August 4, 2017 |
会议地点 | Hawaii, USA |
关键词 | Face Recognition Deep Learning Model Fine-tuning Principal Component Analysis Convolutional Neural Networks |
页码 | 141-146 |
英文摘要 | In this paper, we propose a simple and effective deep face recognition method based on model fine-tuning and principal component analysis. At first, we use our own face dataset to fine tune the improved VGG-Face model. This can effectively solve the problem that the training dataset is too small and the data distribution is different. Through the part of the existing model parameters as the initial parameters of the new model, greatly accelerated the convergence rate of the model training. Then, for the facial features extracted by the deep learning method, we use principal component analysis to further remove redundant features, reduce the complexity of the features, and improve the face recognition rate. The experimental results prove that the proposed approach achieves a good face recognition accuracy on our test dataset. |
源文献作者 | IEEE Robotics and Automation Society |
产权排序 | 1 |
会议录 | 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017
![]() |
会议录出版者 | IEEE |
会议录出版地 | New York |
语种 | 英语 |
ISBN号 | 978-1-5386-0489-2 |
WOS记录号 | WOS:000447628700027 |
源URL | [http://ir.sia.cn/handle/173321/22821] ![]() |
专题 | 沈阳自动化研究所_其他 |
通讯作者 | Zhang YA(张延安) |
作者单位 | 1.Shenyang SIASUN Robot & Automation Co., LTD., China, Shenyang 110168,China 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 3.University of Chinese Academy of Sciences, Beijing 100049, China |
推荐引用方式 GB/T 7714 | Wang, HY,Xu F,Zhang YA,et al. A Deep Face Recognition Method Based on Model Fine-tuning and Principal Component Analysis[C]. 见:. Hawaii, USA. July 31 - August 4, 2017. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。