中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Deep Face Recognition Method Based on Model Fine-tuning and Principal Component Analysis

文献类型:会议论文

作者Wang, HY(王宏玉)1,2; Xu F(徐方)1,2; Zhang YA(张延安)2,3; Jia K(贾凯)1,2
出版日期2017
会议日期July 31 - August 4, 2017
会议地点Hawaii, USA
关键词Face Recognition Deep Learning Model Fine-tuning Principal Component Analysis Convolutional Neural Networks
页码141-146
英文摘要

In this paper, we propose a simple and effective deep face recognition method based on model fine-tuning and principal component analysis. At first, we use our own face dataset to fine tune the improved VGG-Face model. This can effectively solve the problem that the training dataset is too small and the data distribution is different. Through the part of the existing model parameters as the initial parameters of the new model, greatly accelerated the convergence rate of the model training. Then, for the facial features extracted by the deep learning method, we use principal component analysis to further remove redundant features, reduce the complexity of the features, and improve the face recognition rate. The experimental results prove that the proposed approach achieves a good face recognition accuracy on our test dataset.

源文献作者IEEE Robotics and Automation Society
产权排序1
会议录2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-5386-0489-2
WOS记录号WOS:000447628700027
源URL[http://ir.sia.cn/handle/173321/22821]  
专题沈阳自动化研究所_其他
通讯作者Zhang YA(张延安)
作者单位1.Shenyang SIASUN Robot & Automation Co., LTD., China, Shenyang 110168,China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
推荐引用方式
GB/T 7714
Wang, HY,Xu F,Zhang YA,et al. A Deep Face Recognition Method Based on Model Fine-tuning and Principal Component Analysis[C]. 见:. Hawaii, USA. July 31 - August 4, 2017.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。