Multi-sequences with d-perfect property
文献类型:期刊论文
作者 | Feng, XT; Wang, QL; Dal, ZD |
刊名 | Journal of complexity
![]() |
出版日期 | 2005-04-01 |
卷号 | 21期号:2页码:230-242 |
关键词 | Multi-sequences Linear complexity profile D-perfect M-continued fraction |
ISSN号 | 0885-064X |
DOI | 10.1016/j.jco.2004.04.004 |
通讯作者 | Feng, xt(fengxt@mails.gscas.ac.cn) |
英文摘要 | Sequences with almost perfect linear complexity profile are defined by niederreiter (proceedings of the salzburg conference 1986, vol. 5, teubner, stuttgart, 1987, pp. 221-233). xing and lam (ieee trans. inform. theory 45 (1999) 1267; j. complexity 16 (2000) 661) extended this concept from the case of single sequences to the case of multi-sequences and further proposed the concept of d-perfect multi-sequences. in this paper, based on the technique of in-continued fractions due to dai et al. we investigate the property of d-perfect multi-sequences and obtain a sufficient and necessary condition of d-perfect multi-sequences. we show that d-perfect multi-sequences are not always strongly d-perfect. in particular, we give an example to disprove the conjecture proposed by xing (2000) on d-perfect multi-sequences. (c) 2004 elsevier inc. all rights reserved. |
WOS关键词 | LINEAR COMPLEXITY PROFILE ; FINITE-FIELDS |
WOS研究方向 | Computer Science ; Mathematics |
WOS类目 | Computer Science, Theory & Methods ; Mathematics, Applied |
语种 | 英语 |
WOS记录号 | WOS:000227679900004 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2378263 |
专题 | 中国科学院大学 |
通讯作者 | Feng, XT |
作者单位 | Chinese Acad Sci, Grad Sch, State Key Lab Informat Secur, Beijing 100039, Peoples R China |
推荐引用方式 GB/T 7714 | Feng, XT,Wang, QL,Dal, ZD. Multi-sequences with d-perfect property[J]. Journal of complexity,2005,21(2):230-242. |
APA | Feng, XT,Wang, QL,&Dal, ZD.(2005).Multi-sequences with d-perfect property.Journal of complexity,21(2),230-242. |
MLA | Feng, XT,et al."Multi-sequences with d-perfect property".Journal of complexity 21.2(2005):230-242. |
入库方式: iSwitch采集
来源:中国科学院大学
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。