中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An overview of contour detection approaches

文献类型:期刊论文

作者Gong XY(宫新一)1,2; Hu Su1; De Xu1; Zhengtao Zhang1; Fei Shen1; Huabin Yang1
刊名International Journal of Automation and Computing
出版日期2018-12
卷号15期号:6页码:656-672
关键词Contour Detection, Contour Salience, Gestalt Principle, Contour Grouping, Active Contour
英文摘要

Object contour plays an important role in fields such as semantic segmentation and image classification. However, the extraction of the contour is a difficult task, especially when the contour is incomplete or unclosed. In this paper, existing contour detection approaches are  reviewed and roughly divided into three categories: pixel-based, edge-based, and region-based. In addition, while the traditional contour detection approaches have achieved a high degree of sophistication, deep convolutional neural networks (DCNNs) have demonstrated a good performance in image recognition, and therefore, the DCNNs based contour detection approaches are also covered in this paper. Furthermore, the future development of contour detection is analyzed and predicted.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23674]  
专题精密感知与控制研究中心_精密感知与控制
通讯作者Huabin Yang
作者单位1.中国科学院自动化研究所
2.中国科学院大学人工智能学院
推荐引用方式
GB/T 7714
Gong XY,Hu Su,De Xu,et al. An overview of contour detection approaches[J]. International Journal of Automation and Computing,2018,15(6):656-672.
APA Gong XY,Hu Su,De Xu,Zhengtao Zhang,Fei Shen,&Huabin Yang.(2018).An overview of contour detection approaches.International Journal of Automation and Computing,15(6),656-672.
MLA Gong XY,et al."An overview of contour detection approaches".International Journal of Automation and Computing 15.6(2018):656-672.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。