中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Flame detection based on Spatio-Temporal Covariance matrix

文献类型:会议论文

作者Tian DY(田冬英); Gu CJ(古长军); Cong Y(丛杨); Zhang YZ(张艳珠); Wang S(王帅)
出版日期2016
会议日期Augest 18-20, 2016
会议地点Macau, PEOPLES R CHINA
关键词Fire Detection Background Subtraction Region Covariance Support Vector Machines
页码112-116
英文摘要Automatic fire flame detection is important for intelligent video surveillance. The background model and various color features are usually adopted for flame detection. In this paper, a fire flame detection method is developed by combining both background subtraction and region covariance. The color distribution method and background model with an adaptive background learning model are used to preprocess the image firstly. We then extract the space-temporal covariance matrix, which is used to fuse all the discriminative cues together. Finally we use support vector machine to classify fire scene. The proposed system is effective in detecting uncontrolled fire in complicated environment. Experiments based on several public fire video data sets are utilized to justify the effectiveness of our method.
源文献作者S China Univ Technol, Univ Macau, EEE Syst Man & Cybernet Soc, IEEE Robot & Automat Soc, IEEE Control Syst Soc, Beijing Chapter, Chinese Assoc Automat, Chinese Assoc Artificial Intelligence, IEEE SMCA Tech Comm Computat Psychophysiol, IEEE SMCA Tech Comm Bio Mechatron & Bio Robot Syst, IFAC Tech Comm Econ Business & Financial Syst
产权排序1
会议录IEEE ICARM 2016 - 2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM)
会议录出版者IEEE
会议录出版地NEW YORK
语种英语
ISBN号978-1-5090-3364-5
WOS记录号WOS:000386653600020
源URL[http://ir.sia.cn/handle/173321/19409]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Gu CJ(古长军)
作者单位1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
2.Automation and Electrical Engineering Department, Shenyang Li Gong University, Shenyang, China
推荐引用方式
GB/T 7714
Tian DY,Gu CJ,Cong Y,et al. Flame detection based on Spatio-Temporal Covariance matrix[C]. 见:. Macau, PEOPLES R CHINA. Augest 18-20, 2016.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。