中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Color Image Denoising Based on Low-Rank Tensor Train

文献类型:会议论文

作者Zhang Y(张杨)1,2,3; Han Z(韩志)2,3; Tang YD(唐延东)2,3
出版日期2018
会议日期December 12-14, 2018
会议地点Chengdu, China
关键词Image denoising low rank tensor train tensor networks color image
页码1-6
英文摘要Tensor has been widely used in computer vision due to its ability to maintain spatial structure information. Owning to the well-balanced unfolding matrices, the recently proposed tensor train (TT) decomposition can make full use of information from tensors. Thereby, tensor train representation has a better performance in many fields compared to traditional methods of tensor decomposition. Inspired by the success of tensor train, in this paper, we firstly apply low-rank tensor train to recovering noisy color images. Meanwhile, we propose a novel algorithm for noise-contaminated images based on the block coordinate descent (BCD) method. The numerical experiments demonstrate that our algorithm can give a better result in the real color image both visually and numerically
产权排序1
会议录2018 10th International Conference on Graphics and Image Processing (ICGIP 2018)
会议录出版者SPIE
会议录出版地Bellingham, USA
语种英语
ISSN号0277-786X
ISBN号978-1-5106-2828-1
WOS记录号WOS:000485096200095
源URL[http://ir.sia.cn/handle/173321/23847]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Zhang Y(张杨)
作者单位1.University of Chinese Academy of Sciences, China
2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, China
3.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China
推荐引用方式
GB/T 7714
Zhang Y,Han Z,Tang YD. Color Image Denoising Based on Low-Rank Tensor Train[C]. 见:. Chengdu, China. December 12-14, 2018.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。