中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
An improved adaptive sampling algorithm

文献类型:会议论文

作者Liu J(刘健)2; Wu L(邬炼)1,2; Li YP(李一平)2; Yan SX(阎述学)2
出版日期2018
会议日期December 7-10, 2018
会议地点Chengdu, China
关键词GPR adaptive sampling AUVs hotspot region
页码2205-2211
英文摘要For the observation of the Harmful Algal Blooms (HABs) whose chlorophyll concentration obeys the Gauss distribution, an improved adaptive sampling method for a small autonomous underwater vehicle (AUV) based on the Gauss Process Regression (GPR) is proposed. The adaptive sampling process is divided into three stages: the search, the comb sampling and the escape of the hotspot region. This method enables AUV to switch the sampling stages, online path planning and complete the rapid observation of the unknown area through updating the sampling information of its own environment. Under the environment of four hotspot regions, the comparison simulation experiment proves the effectiveness of the algorithm, which can quickly observe the interest regions and obtain the low error estimation of the characteristic distribution. It also proves that the algorithm can effectively avoid the repeated sampling to the same hotspot region, further improve the observation precision of the hotspot region and reduce the prediction error of the hotspot region.
源文献作者IEEE ; SIE
产权排序1
会议录2018 IEEE 4th International Conference on Computer and Communications, ICCC 2018
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-5386-8339-2
源URL[http://ir.sia.cn/handle/173321/25484]  
专题沈阳自动化研究所_水下机器人研究室
通讯作者Wu L(邬炼)
作者单位1.College of Information Science and Engineering, Northeastern University, Shenyang, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang, China
推荐引用方式
GB/T 7714
Liu J,Wu L,Li YP,et al. An improved adaptive sampling algorithm[C]. 见:. Chengdu, China. December 7-10, 2018.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。