中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning Deep Representations and Detection of Docking Stations using Underwater Imaging

文献类型:会议论文

作者Okatani, Takayuki1,2; Liu S(刘爽)2,3,4; Xu HL(徐红丽)4; Lin Y(林扬)4; Gu HT(谷海涛)4; Ozay, Mete2
出版日期2018
会议日期May 28-31, 2018
会议地点Kobe, Japan
关键词Underwater imaging underwater docking CNNs detection
页码1-5
英文摘要Underwater docking endows AUVs with the ability of recharging and data transfer. Detection of underwater docking stations is a crucial step required to perform a successful docking. We propose a method to detect underwater docking stations using two dimensional images captured under different environmental light variance, deformations aroused by scale and rotation, different light intensity and partial observation. In order to realize our proposed method, we first train Convolutional Neural Networks (CNNs) to learn feature representations and then employ a deep detection network. In order to analyze the performance of the proposed method, we prepared an image dataset of docking stations using underwater imaging. Then, we explore the performance of our method using different data augmentation methods. We improved the AUC of detection by 0.14 using data augmentation and obtained 0.88 AUC with data augmentation. An increment of 0.23 AUC is gained by transfer learning and we obtained 0.88 AUC on another datasets.
产权排序1
会议录OCEANS 2018 MTS/IEEE Kobe
会议录出版者IEEE
会议录出版地New York
语种英语
ISBN号978-1-5386-1654-3
WOS记录号WOS:000465206800091
源URL[http://ir.sia.cn/handle/173321/23784]  
专题沈阳自动化研究所_海洋信息技术装备中心
通讯作者Liu S(刘爽)
作者单位1.RIKEN Center for AIP, Tokyo, Japan
2.Graduate School of Information Sciences, Tohoku University, Sendai, Japan
3.University of Chinese Academy of Sciences, Beijing China
4.State Key Laboratory of Robotics, Shenyang Institute of Automation, CAS, Shenyang, China
推荐引用方式
GB/T 7714
Okatani, Takayuki,Liu S,Xu HL,et al. Learning Deep Representations and Detection of Docking Stations using Underwater Imaging[C]. 见:. Kobe, Japan. May 28-31, 2018.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。