Covariance Tracking via Geometric Particle Filtering
文献类型:会议论文
作者 | Wang GG(王国刚)![]() ![]() ![]() |
出版日期 | 2009 |
会议名称 | 2nd Internationl Conference on Intelligent Computation Technology and Automation |
会议日期 | October 10-11, 2009 |
会议地点 | Changsha, China |
关键词 | Region covariance visual tracking geometric particle filtering Manifolds Lie Group |
页码 | 250-254 |
中文摘要 | Region covariance descriptor recently proposedhas has been approved robust and elegant to describe a region of interest, which has been applied to visual tracking. The covariance matrix enables efficient fusion of different types of features, where the spatial and statistical properties as well as their correlation are characterized. The similarity of two covariance descriptor is measured on Riemannian manifolds. Within a probabilistic framework, we integrate covariance descriptor into Mont Carlo tracking technique for visual tracking. Most existing particle filtering based tracking algorithms treat deformation parameters of the target as a vector. We have proposed a visualt tracking algorithm via geometric particle filtering, which implements the particle filter with the constraint that the system state lies in a low dimensional manifold: affine lie group. The sequential Bayesian updating consists in drawing state samples while moving on the manifold geodesics; Theoretic analysis and experimental evaluations against the tracking algorithm based on geometric particle filtering demonstrate the promise and effectiveness of this algorithm. |
收录类别 | EI ; CPCI(ISTP) |
产权排序 | 1 |
会议主办者 | IEEE Intelligent Computat Soc, IEEE Comp Soc, Res Assoc Intelligent Computat Technol & Automat, Changsha Univ Sci & Technol, Hunan Univ Sci & Technol |
会议录 | ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS
![]() |
会议录出版者 | IEEE COMPUTER SOC |
会议录出版地 | LOS ALAMITOS |
语种 | 英语 |
ISBN号 | 978-0-7695-3804-4 |
WOS记录号 | WOS:000275861900061 |
源URL | [http://ir.sia.cn/handle/173321/7966] ![]() |
专题 | 沈阳自动化研究所_光电信息技术研究室 |
推荐引用方式 GB/T 7714 | Wang GG,Liu YP,Shi HY. Covariance Tracking via Geometric Particle Filtering[C]. 见:2nd Internationl Conference on Intelligent Computation Technology and Automation. Changsha, China. October 10-11, 2009. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。