中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimum parameter for the SOR-like method for augmented systems

文献类型:期刊论文

作者Li ZJ(李长军); Li, Z; Shao, XH; Nie YY(聂义勇); Evans, DJ
刊名INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
出版日期2004
卷号81期号:6页码:749-763
关键词SOR method SOR-like method GSOR method saddle point problem augmented system iterative method optimum parameter
ISSN号0020-7160
产权排序1
中文摘要Recently, several proposals for the generalization of Young's SOR method to the saddle point problem or the augmented system has been presented. One of the most practical versions is the SOR-like method given by Golub et al. , [(2001). SOR-like methods for augmented systems. BIT , 41 , 71-85.], where the convergence and the determination of its optimum parameters were given. In this article, a full characterization of the spectral radius of the SOR-like iteration matrix is given, and an explicit expression for the optimum parameter is given in each case. The new results also lead to different results to that of Golub et al. Besides, it is shown that by the choices of the preconditioning matrix, the optimum SOR-like iteration matrix has no complex eigenvalues, therefore, it can be accelerated by semi-iterative methods.
WOS标题词Science & Technology ; Physical Sciences
类目[WOS]Mathematics, Applied
研究领域[WOS]Mathematics
关键词[WOS]SADDLE-POINT PROBLEMS
收录类别SCI ; EI
语种英语
WOS记录号WOS:000222350500010
公开日期2012-05-29
源URL[http://ir.sia.cn/handle/173321/6910]  
专题沈阳自动化研究所_工业信息学研究室_工业控制系统研究室
推荐引用方式
GB/T 7714
Li ZJ,Li, Z,Shao, XH,et al. Optimum parameter for the SOR-like method for augmented systems[J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,2004,81(6):749-763.
APA Li ZJ,Li, Z,Shao, XH,Nie YY,&Evans, DJ.(2004).Optimum parameter for the SOR-like method for augmented systems.INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS,81(6),749-763.
MLA Li ZJ,et al."Optimum parameter for the SOR-like method for augmented systems".INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 81.6(2004):749-763.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。