中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Application of unscented Kalman filter in the SOC estimation of Li-ion battery for Autonomous Mobile Robot

文献类型:会议论文

作者Shi P(石璞); Zhao YW(赵忆文)
出版日期2006
会议名称IEEE International Conference on Information Acquisition
会议日期August 20-23, 2006
会议地点Weihai, China
关键词UKF Li-ion battery SOC EKF AMR
页码1279-1283
中文摘要When the Autonomous Mobile Robot(AMR) is popular in unknown environment, accurate estimation of SOC(State of Charge) is becoming one of the primary challenges in Autonomous Mobile Robots research. However, as defects of the Extended Kalman Filter(EKF) in nonlinear estimation, there exists estimated error. which affects the estimation accuracy, when it is adopted in nonlinear estimation of a battery system. In order to vield the higher accuracy of SOC estimation, a novel method-Unscented Kalman Filter (UKF) was employed in SOC estimation for a battery system. The EKF and UKF are compared through experiments. Experimental results show that the UKF is superior to the EKF in battery SOC estimation for AMR.
收录类别EI ; CPCI(ISTP)
产权排序1
会议主办者IEEE Robot & Automat Soc, CAS, Inst Intelligent Machines, Chinese Univ Hong Kong, Int Assoc Informat Acquisit, Int Journal Informat Acquisit
会议录2006 IEEE International Conference on Information Acquisition, Vols 1 and 2, Conference Proceedings
会议录出版者IEEE
会议录出版地NEW YORK
语种英语
ISBN号1-4244-0528-9
WOS记录号WOS:000242935800239
源URL[http://ir.sia.cn/handle/173321/8586]  
专题沈阳自动化研究所_机器人学研究室
推荐引用方式
GB/T 7714
Shi P,Zhao YW. Application of unscented Kalman filter in the SOC estimation of Li-ion battery for Autonomous Mobile Robot[C]. 见:IEEE International Conference on Information Acquisition. Weihai, China. August 20-23, 2006.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。