研磨抛光机器人加工系统的研究与实现
文献类型:学位论文
作者 | 王瑞芳 |
学位类别 | 硕士 |
答辩日期 | 2005-05-31 |
授予单位 | 中国科学院沈阳自动化研究所 |
授予地点 | 中国科学院沈阳自动化研究所 |
导师 | 徐方 |
关键词 | 机器人 运动学模型 研磨抛光 通讯协议 CAN |
其他题名 | Research and Implementation of Grinding and Polishing Robot Machining System |
学位专业 | 机械电子工程 |
中文摘要 | 制造业中的研磨抛光作业主要依靠技术工人手工完成,不仅费时费力,且很难保证加工质量的一致性;工业现场的噪声、粉尘也严重影响工人健康。机器人研磨抛光加工的实现对于提高加工效率、保证产品质量、降低工人劳动强度具有重要意义。本论文以新松机器人自动化股份有限公司和北京航空材料研究院的合作项目“透明件研磨抛光专用设备”为背景,对研磨抛光机器人加工系统的设计与实现进行了研究。 本论文主要从研磨抛光机器人加工系统的三个功能模块来进行研究。它包括机器人控制系统、力反馈系统和机器人加工工艺研究三个部分。在机器人控制系统中对自主研制的五轴框架式研磨抛光机器人,使用工程项目中常用的机器人各连杆坐标系定义方法,建立机器人运动学模型;并对机器人在制造和装配后出现的几何参数误差进行补偿,重新修正运动学模型。在研磨抛光过程中,由于机器人手部磨抛工具与工件接触产生作用力,需要在加工过程中对机器人进行柔顺控制,由于机器人刚度很大,系统中采用被动柔顺的方法增加机器人的柔性进行控制。 在力反馈系统中运用六维腕力传感器实时反馈接触力的信息,并按照制定的合理CAN通讯协议,通过CAN总线将其传递给机器人主控制器,以进行机器人柔顺控制和工件保护,防止机器人在加工过程中因接触力过大而损伤工件。 机器人加工工艺研究是建立在大量机器人研磨抛光实验的基础上的。针对加工对象——有机玻璃,在满足加工后工件质量要求的前提下,确定了机器人加工时磨片的合理使用顺序;对不同形状的工件规划加工路径;并安排正交实验,利用多元线性回归方法建立机器人研磨工艺过程模型;获得机器人磨抛加工的最优工艺参数组合;制定了机器人磨抛加工策略。最后的机器人研磨抛光加工实例进一步验证机器人研磨抛光工艺知识的合理性。 |
索取号 | TP242/W35/2005 |
英文摘要 | In manufacturing, the grinding and polishing job are mainly implemented by skilled workers. It consumes not only time but also manpower, and it is difficult to secure the consistency of machining quality. The noise and dust in workshop do great harm to workers’ health. The implementation of robot grinding and polishing significantly advances the machining efficiency, secures machining quality, and reduces labor intensity. The research of this paper mainly focuses on design and implementation of grinding and polishing robot machining system, based on the project “ Special Devices of Grinding and Polishing for Transparent Parts,” which is cooperatively conducted by Shenyang SIASUN Robot & Automation CO., Ltd. and Beijing Institute of Aerial Materials. This paper develops research on three modules of grinding and polishing robot machining system: robot control system, force feedback system and robot machining specifications. In the robot control system, kinematics model of the 5-axis frame robot developed independently is established by the frequently used definition method of robot link coordinates, the geometry parameter errors owe to the robot’s manufacturing and assembly is compensated, and the kinematics model is corrected. During robot grinding and polishing, the tool mounted on the robot hand comes into physical contact with the workpiece and then produces contact forces, so the robot needs compliance control. Because of the stiffness of the robot, passive compliance control is needed in order to increase compliance of the system. In the force feedback system, in order to conduct compliance control and protect workpiece, and avoid shattering workpiece when contact forces are too large, the real time contact forces information is obtained by the six-dimension wrist force sensor and then fed back to robot controller through CAN (Controller Area Network), according to the established reasonable CAN communication protocol. Robot machining specifications is established through a lot of experiments of robot grinding and polishing. As for the machining object-organic glasses, in order to meet the quality requests, a reasonable sequence of grinding-plates is determined; different machining path planning due to variform workpieces is done; orthogonal experiments are arranged; the robot grinding process model is established through multi-variable linear regression theory; optimal specification parameters combination for robot grinding and polishing are got; and robot grinding and polishing machining strategy is determined. The instance on real system validates the robot grinding and polishing specifications. |
语种 | 中文 |
公开日期 | 2012-08-29 |
产权排序 | 1 |
分类号 | TP242 |
源URL | [http://ir.sia.ac.cn/handle/173321/9434] ![]() |
专题 | 沈阳自动化研究所_其他 |
推荐引用方式 GB/T 7714 | 王瑞芳. 研磨抛光机器人加工系统的研究与实现[D]. 中国科学院沈阳自动化研究所. 中国科学院沈阳自动化研究所. 2005. |
入库方式: OAI收割
来源:沈阳自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。