中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
High-dimensional grouped folded concave penalized estimation via the LLA algorithm

文献类型:期刊论文

作者Guo X(郭骁)4; Wang Y(王尧)2,3; Zhang H(张海)1,4
刊名Journal of the Korean Statistical Society
出版日期2019
卷号48期号:1页码:84-96
关键词Grouped variable selection High-dimensional linear models Folded concave penalty Local linear approximation Oracle estimator
ISSN号1226-3192
产权排序2
英文摘要

The group folded concave penalization problems have been shown to process the satisfactory oracle property theoretically. However, it remains unknown whether the optimization algorithm for solving the resulting nonconvex problem can find such oracle solution among multiple local solutions. In this paper, we extend the well-known local linear approximation (LLA) algorithm to solve the group folded concave penalization problem for the linear models. We prove that, with the group LASSO estimator as the initial value, the two-step LLA solution converges to the oracle estimator with overwhelming probability, and thus closing the theoretical gap. The results are high-dimensional which allow the group number to grow exponentially, the true relevant groups and the true maximum group size to grow polynomially. Numerical studies are also conducted to show the merits of the LLA procedure.

WOS关键词GROUP SELECTION ; REGRESSION ; LIKELIHOOD ; LASSO
资助项目China Postdoctoral Science Foundation[2017M610628] ; Key Research Program of Hunan Province, China[2017GK2273] ; National Natural Science Foundation of China[11571011] ; China Postdoctoral Science Foundation[2018T111031]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000460719100007
源URL[http://ir.sia.cn/handle/173321/24153]  
专题沈阳自动化研究所_机器人学研究室
通讯作者Zhang H(张海)
作者单位1.Faculty of Information Technology, Macau University of Science and Technology, Macau, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China
3.School of Management, Xi’an Jiaotong University, Xi’an 710049, China
4.School of Mathematics, Northwest University, Xi’an, 710069, China
推荐引用方式
GB/T 7714
Guo X,Wang Y,Zhang H. High-dimensional grouped folded concave penalized estimation via the LLA algorithm[J]. Journal of the Korean Statistical Society,2019,48(1):84-96.
APA Guo X,Wang Y,&Zhang H.(2019).High-dimensional grouped folded concave penalized estimation via the LLA algorithm.Journal of the Korean Statistical Society,48(1),84-96.
MLA Guo X,et al."High-dimensional grouped folded concave penalized estimation via the LLA algorithm".Journal of the Korean Statistical Society 48.1(2019):84-96.

入库方式: OAI收割

来源:沈阳自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。