High-dimensional grouped folded concave penalized estimation via the LLA algorithm
文献类型:期刊论文
作者 | Guo X(郭骁)4; Wang Y(王尧)2,3; Zhang H(张海)1,4 |
刊名 | Journal of the Korean Statistical Society
![]() |
出版日期 | 2019 |
卷号 | 48期号:1页码:84-96 |
关键词 | Grouped variable selection High-dimensional linear models Folded concave penalty Local linear approximation Oracle estimator |
ISSN号 | 1226-3192 |
产权排序 | 2 |
英文摘要 | The group folded concave penalization problems have been shown to process the satisfactory oracle property theoretically. However, it remains unknown whether the optimization algorithm for solving the resulting nonconvex problem can find such oracle solution among multiple local solutions. In this paper, we extend the well-known local linear approximation (LLA) algorithm to solve the group folded concave penalization problem for the linear models. We prove that, with the group LASSO estimator as the initial value, the two-step LLA solution converges to the oracle estimator with overwhelming probability, and thus closing the theoretical gap. The results are high-dimensional which allow the group number to grow exponentially, the true relevant groups and the true maximum group size to grow polynomially. Numerical studies are also conducted to show the merits of the LLA procedure. |
WOS关键词 | GROUP SELECTION ; REGRESSION ; LIKELIHOOD ; LASSO |
资助项目 | China Postdoctoral Science Foundation[2017M610628] ; Key Research Program of Hunan Province, China[2017GK2273] ; National Natural Science Foundation of China[11571011] ; China Postdoctoral Science Foundation[2018T111031] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000460719100007 |
源URL | [http://ir.sia.cn/handle/173321/24153] ![]() |
专题 | 沈阳自动化研究所_机器人学研究室 |
通讯作者 | Zhang H(张海) |
作者单位 | 1.Faculty of Information Technology, Macau University of Science and Technology, Macau, China 2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang 110016, China 3.School of Management, Xi’an Jiaotong University, Xi’an 710049, China 4.School of Mathematics, Northwest University, Xi’an, 710069, China |
推荐引用方式 GB/T 7714 | Guo X,Wang Y,Zhang H. High-dimensional grouped folded concave penalized estimation via the LLA algorithm[J]. Journal of the Korean Statistical Society,2019,48(1):84-96. |
APA | Guo X,Wang Y,&Zhang H.(2019).High-dimensional grouped folded concave penalized estimation via the LLA algorithm.Journal of the Korean Statistical Society,48(1),84-96. |
MLA | Guo X,et al."High-dimensional grouped folded concave penalized estimation via the LLA algorithm".Journal of the Korean Statistical Society 48.1(2019):84-96. |
入库方式: OAI收割
来源:沈阳自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。