In silico site of metabolism prediction for human UGT-catalyzed reactions
文献类型:期刊论文
作者 | Peng, Jianlong1; Lu, Jing1; Shen, Qiancheng1; Zheng, Mingyue1![]() ![]() ![]() ![]() ![]() |
刊名 | BIOINFORMATICS
![]() |
出版日期 | 2014-02-01 |
卷号 | 30期号:3页码:398-405 |
ISSN号 | 1367-4803 |
DOI | 10.1093/bioinformatics/btt681 |
文献子类 | Article |
英文摘要 | Motivation: The human uridine diphosphate-glucuronosyltransferase enzyme family catalyzes the glucuronidation of the glycosyl group of a nucleotide sugar to an acceptor compound (substrate), which is the most common conjugation pathway that serves to protect the organism from the potential toxicity of xenobiotics. Moreover, it could affect the pharmacological profile of a drug. Therefore, it is important to identify the metabolically labile sites for glucuronidation. Results: In the present study, we developed four in silico models to predict sites of glucuronidation, for four major sites of metabolism functional groups, i.e. aliphatic hydroxyl, aromatic hydroxyl, carboxylic acid or amino nitrogen, respectively. According to the mechanism of glucuronidation, a series of 'local' and 'global' molecular descriptors characterizing the atomic reactivity, bonding strength and physicalchemical properties were calculated and selected with a genetic algorithm-based feature selection approach. The constructed support vector machine classification models show good prediction performance, with the balanced accuracy ranging from 0.88 to 0.96 on test set. For further validation, our models can successfully identify 84% of experimentally observed sites of metabolisms for an external test set containing 54 molecules. |
WOS关键词 | URIDINE-DIPHOSPHATE-GLUCURONOSYLTRANSFERASE ; QUANTUM-CHEMICAL DESCRIPTORS ; SUPPORT VECTOR MACHINES ; UDP-GLUCURONOSYLTRANSFERASE ; SUBSTRATE SELECTIVITY ; DRUG GLUCURONIDATION ; PATTERN-RECOGNITION ; DESIGN ; CONJUGATION ; PARAMETERS |
资助项目 | Hi-TECH Research and Development Program of China[2012AA020308] ; National ST Major Project[2012ZX09301-001-002] ; National Natural Science Foundation of China[21021063] ; National Natural Science Foundation of China[81001399] ; National Natural Science Foundation of China[81230076] ; National Natural Science Foundation of China[21210003] |
WOS研究方向 | Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000331271100014 |
出版者 | OXFORD UNIV PRESS |
源URL | [http://119.78.100.183/handle/2S10ELR8/277202] ![]() |
专题 | 药物发现与设计中心 中科院受体结构与功能重点实验室 新药研究国家重点实验室 |
通讯作者 | Zheng, Mingyue |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, State Key Lab Drug Res, Shanghai 201203, Peoples R China; 2.E China Univ Sci & Technol, Sch Pharm, Shanghai 200237, Peoples R China |
推荐引用方式 GB/T 7714 | Peng, Jianlong,Lu, Jing,Shen, Qiancheng,et al. In silico site of metabolism prediction for human UGT-catalyzed reactions[J]. BIOINFORMATICS,2014,30(3):398-405. |
APA | Peng, Jianlong.,Lu, Jing.,Shen, Qiancheng.,Zheng, Mingyue.,Luo, Xiaomin.,...&Chen, Kaixian.(2014).In silico site of metabolism prediction for human UGT-catalyzed reactions.BIOINFORMATICS,30(3),398-405. |
MLA | Peng, Jianlong,et al."In silico site of metabolism prediction for human UGT-catalyzed reactions".BIOINFORMATICS 30.3(2014):398-405. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。