中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Fast object detection based on binary deep convolution neural networks

文献类型:期刊论文

作者Sun SY(孙思洋); Yin YJ(尹英杰); Wang XG(王欣刚); Xu D(徐德); Gu QY (顾庆毅); Wu WQ(武文琦); Xu, De; Wu, Wenqi; Sun, Siyang; Yin, Yingjie
刊名CAAI Transactions on Intelligence Technology
出版日期2018-12
卷号3期号:4页码:191-197
关键词Object detection
英文摘要

In this study, a fast object detection algorithm based on binary deep convolution neural networks (CNNs) is proposed. Convolution kernels of different sizes are used to predict classes and bounding boxes of multi-scale objects directly in the last feature map of a deep CNN. In this way, rapid object detection with acceptable precision loss is achieved. In addition, binary quantisation for weight values and input data of each layer is used to squeeze the networks for faster object detection. Compared to full-precision convolution, the proposed binary deep CNNs for object detection results in 62 times faster convolutional operations and 32 times memory saving in theory, what’s more, the proposed method is easy to be implemented in embedded computing systems because of the binary operation for convolution and low memory requirement. Experimental results on Pascal VOC2007 validate the effectiveness of the authors’ proposed method.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39055]  
专题精密感知与控制研究中心_精密感知与控制
中国科学院自动化研究所
通讯作者Wang XG(王欣刚); Wang, Xingang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Science
推荐引用方式
GB/T 7714
Sun SY,Yin YJ,Wang XG,et al. Fast object detection based on binary deep convolution neural networks[J]. CAAI Transactions on Intelligence Technology,2018,3(4):191-197.
APA Sun SY.,Yin YJ.,Wang XG.,Xu D.,Gu QY .,...&Gu, Qingyi.(2018).Fast object detection based on binary deep convolution neural networks.CAAI Transactions on Intelligence Technology,3(4),191-197.
MLA Sun SY,et al."Fast object detection based on binary deep convolution neural networks".CAAI Transactions on Intelligence Technology 3.4(2018):191-197.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。