Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach
文献类型:期刊论文
作者 | Xiong, Tianyi1,2,3![]() ![]() ![]() ![]() |
刊名 | IET CONTROL THEORY AND APPLICATIONS
![]() |
出版日期 | 2020-06-11 |
卷号 | 14期号:9页码:1147-1157 |
关键词 | neurocontrollers multi-agent systems Lyapunov methods closed loop systems nonlinear control systems time-varying systems adaptive control observers uncertain systems position control radial basis function networks robust control control system synthesis learning (artificial intelligence) minimal learning-parameter approach fixed-time CLSO time-varying formation tracking problem formation tracking control scheme multiagent systems time-varying formation tracking control problem model uncertainties velocity measurements radial basis function neural networks fixed-time cascaded leader state observer fixed-time observer-based adaptive neural network time-varying formation tracking control RBFNN-based adaptive control scheme |
ISSN号 | 1751-8644 |
DOI | 10.1049/iet-cta.2019.0309 |
通讯作者 | Pu, Zhiqiang(zhiqiang.pu@ia.ac.cn) |
英文摘要 | This study proposes a novel control scheme to investigate the time-varying formation tracking control problem for multi-agent systems with model uncertainties and the absence of leader's velocity measurements. For each agent, a novel fixed-time cascaded leader state observer (CLSO) without velocity measurements is first designed to reconstruct the states of the leader. Radial basis function neural networks (RBFNNs) are adopted to deal with the model uncertainties online. Taking the square of the norm of the NN weight vector as a newly developed adaptive parameter, a novel RBFNN-based adaptive control scheme with minimal learning-parameter approach and fixed-time CLSO is then constructed to tackle the time-varying formation tracking problem. The uniform ultimate boundedness property of the formation tracking error is guaranteed through Lyapunov stability analysis. Finally, two simulation scenario results demonstrate the effectiveness of the proposed formation tracking control scheme. |
WOS关键词 | AUTONOMOUS UNDERWATER VEHICLES ; COOPERATIVE CONTROL ; CONSENSUS TRACKING ; MOBILE ROBOTS |
资助项目 | NNSFC[61603383] ; NNSFC[61421004] |
WOS研究方向 | Automation & Control Systems ; Engineering ; Instruments & Instrumentation |
语种 | 英语 |
WOS记录号 | WOS:000538128500004 |
出版者 | INST ENGINEERING TECHNOLOGY-IET |
资助机构 | NNSFC |
源URL | [http://ir.ia.ac.cn/handle/173211/39636] ![]() |
专题 | 综合信息系统研究中心_飞行器智能技术 |
通讯作者 | Pu, Zhiqiang |
作者单位 | 1.Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China 2.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China 3.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Xiong, Tianyi,Pu, Zhiqiang,Yi, Jianqiang,et al. Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach[J]. IET CONTROL THEORY AND APPLICATIONS,2020,14(9):1147-1157. |
APA | Xiong, Tianyi,Pu, Zhiqiang,Yi, Jianqiang,&Tao, Xinlong.(2020).Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach.IET CONTROL THEORY AND APPLICATIONS,14(9),1147-1157. |
MLA | Xiong, Tianyi,et al."Fixed-time observer based adaptive neural network time-varying formation tracking control for multi-agent systems via minimal learning parameter approach".IET CONTROL THEORY AND APPLICATIONS 14.9(2020):1147-1157. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。