中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Autonomous Navigation with Improved Hierarchical Neural Network Based on Deep Reinforcement Learning

文献类型:会议论文

作者Zhang HY(张海莹); Qiu TH(丘滕海); Li SX(李书晓); Zhu CF(朱承飞); Lan XS(兰晓松); Chang HX(常红星); Zhu, Chengfei; Qiu, Tenghai; Li, Shuxiao; Chang, Hongxing
出版日期2019-07
会议日期2019.07.27-2019.07.30
会议地点中国 广州
关键词Autonomous Navigation DDPG Improved Hierarchical Neural Network Curriculum Learning
英文摘要
    Compared with traditional navigation strategies in normal environments, the unmanned vehicles in battlefield environments require better navigation strategies. This research formulates the autonomous navigation in battlefield environments as a markov decision process (MDP) and introduces deep deterministic policy gradient (DDPG) to obtain the continuous control signal. Meanwhile, the curriculum learning is employed to increase utilization of samples in this research. Inspired by the biological mechanism, an improved hierarchical neural network is proposed to refine the input information, which plays a better role in coordinating the choice of agent’sbehavior.Experimental results show that the models we proposed are able to acquire effective navigation strategies without knowing the whole information of environment. At the same time, it is proved that the hierarchical neural network and the curriculum learning are effective for improving efficiency of learning and generalization capability of models.
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39100]  
专题自动化研究所_综合信息系统研究中心
通讯作者Qiu TH(丘滕海); Qiu, Tenghai
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Zhang HY,Qiu TH,Li SX,et al. Autonomous Navigation with Improved Hierarchical Neural Network Based on Deep Reinforcement Learning[C]. 见:. 中国 广州. 2019.07.27-2019.07.30.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。