中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Identity-Enhanced Network for Facial Expression Recognition

文献类型:会议论文

作者Yanwei, Li1,4; Xingang, Wang1; Shilei, Zhang3; Lingxi, Xie2; Wenqi, Wu1,4; Hongyuan, Yu1,4; Zheng Zhu1,4; Zhu, Zheng; Wu, Wenqi; Li, Yanwei
出版日期2018
会议日期2018.12.02-2018.12.06
会议地点澳大利亚珀斯
英文摘要

Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.

会议录出版者Springer
语种英语
源URL[http://ir.ia.ac.cn/handle/173211/39170]  
专题精密感知与控制研究中心_精密感知与控制
通讯作者Xingang, Wang; Wang, Xingang
作者单位1.Institute of Automation, Chinese Academy of Sciences
2.Johns Hopkins University
3.IBM Research, China
4.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Yanwei, Li,Xingang, Wang,Shilei, Zhang,et al. Identity-Enhanced Network for Facial Expression Recognition[C]. 见:. 澳大利亚珀斯. 2018.12.02-2018.12.06.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。