Identity-Enhanced Network for Facial Expression Recognition
文献类型:会议论文
作者 | Yanwei, Li1,4; Xingang, Wang1; Shilei, Zhang3; Lingxi, Xie2; Wenqi, Wu1,4; Hongyuan, Yu1,4; Zheng Zhu1,4; Zhu, Zheng![]() ![]() ![]() |
出版日期 | 2018 |
会议日期 | 2018.12.02-2018.12.06 |
会议地点 | 澳大利亚珀斯 |
英文摘要 | Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance caused by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets. |
会议录出版者 | Springer |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/39170] ![]() |
专题 | 精密感知与控制研究中心_精密感知与控制 |
通讯作者 | Xingang, Wang; Wang, Xingang |
作者单位 | 1.Institute of Automation, Chinese Academy of Sciences 2.Johns Hopkins University 3.IBM Research, China 4.University of Chinese Academy of Sciences |
推荐引用方式 GB/T 7714 | Yanwei, Li,Xingang, Wang,Shilei, Zhang,et al. Identity-Enhanced Network for Facial Expression Recognition[C]. 见:. 澳大利亚珀斯. 2018.12.02-2018.12.06. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。